Skip to main content

Advertisement

Log in

On a canonical extension of Korn’s first and Poincaré’s inequalities to H(CURL)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove a Korn-type inequality in \( \mathop {\text{H}}\limits^\circ \left( {{\text{Curl}};\Omega, {\mathbb{R}^{3 \times 3}}} \right) \) for tensor fields P mapping Ω to \( {\mathbb{R}^{3 \times 3}} \). More precisely, let \( \Omega \subset {\mathbb{R}^3} \) be a bounded domain with connected Lipschitz boundary ∂Ω. Then there exists a constant c > 0 such that

$$ c{\left\| P \right\|_{{{\text{L}}^2}\left( {\Omega, {\mathbb{R}^{3 \times 3}}} \right)}} \leqslant {\left\| {{\text{sym}}\,P} \right\|_{{{\text{L}}^2}\left( {\Omega, {\mathbb{R}^{3 \times 3}}} \right)}} + {\left\| {{\text{Curl}}\,P} \right\|_{{{\text{L}}^2}\left( {\Omega, {\mathbb{R}^{3 \times 3}}} \right)}} $$
(0.1)

for all tensor fields P\( \mathop {\text{H}}\limits^\circ \left( {{\text{Curl}};\Omega, {\mathbb{R}^{3 \times 3}}} \right) \), i.e., all P\( {\text{H}}\left( {{\text{Curl}};\Omega, {\mathbb{R}^{3 \times 3}}} \right) \) with vanishing tangential trace on ∂Ω. Here the rotation and tangential trace are defined row-wise. For compatible P of form P = ∇v, Curl P = 0, where \( v \in {{\text{H}}^1}\left( {\Omega, {\mathbb{R}^3}} \right) \) is a vector field with components v n for which ∇v n are normal at ∂Ω, estimates (0.1) is reduced to a non standard variant of Korn’s first inequality:

$$ c{\left\| {\nabla \upsilon } \right\|_{{{\text{L}}^2}\left( {\Omega, {\mathbb{R}^{3 \times 3}}} \right)}} \leqslant {\left\| {{\text{sym}}\,\nabla \upsilon } \right\|_{{{\text{L}}^2}\left( {\Omega, {\mathbb{R}^{3 \times 3}}} \right)}}. $$

For skew-symmetric P (with sym P = 0), estimates (0.1) generates a nonstandard version of Poincaré’s inequality. Therefore, the estimate is a generalization of two classical inequalities of Poincaré and Korn. Bibliography: 24 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. G. Ciarlet, “On Korn’s inequality,” Chin. Ann. Math., 31B, No. 5, 607–618 (2010).

    Article  MathSciNet  Google Scholar 

  2. J. K. Djoko, F. Ebobisse, A. T. McBride, and B. D. Reddy, “A discontinuous Galerkin formulation for classical and gradient plasticity. Part 1: Formulation and analysis,” Comput. Methods Appl. Mech. Engrg., 196, No. 37, 3881–3897 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Ebobisse and P. Neff, “Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin,” Math. Mech. Solids, 15, 691–703 (2010).

    Article  MathSciNet  Google Scholar 

  4. A. Garroni, G. Leoni, and M. Ponsiglione, “Gradient theory for plasticity via homogenization of discrete dislocations,” J. Eur. Math. Soc., 12, No. 5, 1231–1266 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes Math., 749, Springer, Heidelberg (1979).

  6. R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart (1986).

    MATH  Google Scholar 

  7. P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford Univ. Press, New York (2003).

    Book  MATH  Google Scholar 

  8. P. Neff, “On Korn’s first inequality with nonconstant coefficients,” Proc. Roy. Soc. Edinburgh Sect. A, 132, 221–243 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Neff, K. Chełmińki, and H. D. Alber, “Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case,” Math. Models Methods Appl. Sci., 19, No. 2 (2009).

    Google Scholar 

  10. P. Neff, D. Pauly, and K.-J. Witsch, “A canonical extension of Korn’s first inequality to H(Curl) motivated by gradient plasticity with plastic spin,” C. R. Acad. Sci. Paris Ser. 1, 349, 1251–1254 (2011).

    Article  MathSciNet  Google Scholar 

  11. P. Neff, D. Pauly, and K.-J. Witsch, “A Korn’s inequality for incompatible tensor fields,” Proc. Appl. Math. Mech., 11, 683–684 (2011).

    Article  Google Scholar 

  12. P. Neff, D. Pauly, and K.-J. Witsch, “Maxwell meets Korn: A new coercive inequality for tensor fields in \( {\mathbb{R}^{N \times N}} \) with square-integrable exterior derivative,” Math. Methods Appl. Sci., 35, No. 1, 65–71 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Neff, A. Sydow, and C. Wieners, “Numerical approximation of incremental infinitesimal gradient plasticity,” Internat. J. Numer. Methods Engrg., 77, No. 3, 414–436 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Pauly, “Hodge–Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media,” Math. Methods Appl. Sci., 31, 1509–1543 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Picard, “On the boundary value problems of electro- and magnetostatics,” Proc. Roy. Soc. Edinburgh Sect. A. 92, 165–174 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory,” Math. Z., 187, 151–164 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Picard, “Some decomposition theorems and their applications to non-linear potential theory and Hodge theory,” Math. Methods Appl. Sci., 12, 35–53 (1990).

    Article  MathSciNet  Google Scholar 

  18. R. Picard, N. Weck, and K.-J. Witsch, “Tine-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles,” Analysis (Munich), 21, 231–263 (2001).

    MathSciNet  MATH  Google Scholar 

  19. B. D. Reddy, F. Ebobisse, and A. T. McBride, “Well-posedness of a model of strain gradient plasticity for plastically irrotational materials,” Int. J. Plasticity, 24, 55–73 (2008).

    Article  MATH  Google Scholar 

  20. T. Valent, Boundary Value Problems of Finite Elasticity, Springer, Berlin (1988).

    Book  MATH  Google Scholar 

  21. C. Weber, “A local compactness theorem for Maxwell’s equations,” J. Math. Anal. Appl., 2, 12–25 (1980).

    MATH  Google Scholar 

  22. C. Weber, “Regularity theorems for Maxwell’s equations,” Math. Methods Appl. Sci., 3, 523–536 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Weck, “Maxwell’s boundary value problems on Riemannian manifolds with nonsmooth boundaries,” J. Math. Anal. Appl., 46, 410–437 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  24. K.-J. Witsch, “A remark on a compactness result in electromagnetic theory,” Math. Methods Appl. Sci., 16, 123–129 (1993).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Neff.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 397, 2011, pp. 115–125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neff, P., Pauly, D. & Witsch, KJ. On a canonical extension of Korn’s first and Poincaré’s inequalities to H(CURL). J Math Sci 185, 721–727 (2012). https://doi.org/10.1007/s10958-012-0955-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0955-4

Keywords

Navigation