Skip to main content
Log in

A Generalised Airy Distribution Function for the Accumulated Area Swept by N Vicious Brownian Paths

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work exact expressions for the distribution function of the accumulated area swept by excursions and meanders of N vicious Brownian particles up to time T are derived. The results are expressed in terms of a generalised Airy distribution function, containing the Vandermonde determinant of the Airy roots. By mapping the problem to an Random Matrix Theory ensemble we are able to perform Monte Carlo simulations finding perfect agreement with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For simplicity we have set \(D=\frac{1}{2}\). This can be thought as equating dimensions of length squared with time, which implies that the dimensions of area are \([A]=T^{3/2}\)

  2. At https://oeis.org

References

  1. Adler, M., van Moerbeke, P., Vanderstichelen, D.: Non-intersecting brownian motions leaving from and going to several points. Physica D 241(5), 443–460 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baik, J.: Random vicious walks and random matrices. Commun. Pure Appl. Math. 53(11), 1385–1410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barkai, E., Aghion, E., Kessler, D.: From the area under the bessel excursion to anomalous diffusion of cold atoms. Phys. Rev. X 4, 021036 (2014)

    Google Scholar 

  4. Bleher, P., Delvaux, S., Kuijlaars, A.B.J.: Random matrix model with external source and a constrained vector equilibrium problem. Commun. Pure Appl. Math. 64(1), 116–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Kuan, J.: Random surface growth with a wall and plancherel measures for \(o(\infty )\). Commun. Pure Appl. Math. 63(7), 831–894 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castillo, I.P., Dupic, T.: Reunion probabilities of \( n \) one-dimensional random walkers with mixed boundary conditions. arXiv preprint arXiv:1311.0654 (2013)

  7. Daems, E., Kuijlaars, A.: Multiple orthogonal polynomials of mixed type and non-intersecting brownian motions. J. Approx. Theory 146(1), 91–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Darling, D.A.: On the supremum of a certain gaussian process. Ann. Probab. 11, 803 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrari, P.L., Praehofer, M.: One-dimensional stochastic growth and Gaussian ensembles of random matrices. Markov Processes Relat. Fields 12, 203–234 (2006)

  10. Ferrari, P.L., Prähofer, M., Spohn, H.: Fluctuations of an atomic ledge bordering a crystalline facet. Phys. Rev. E 69, 035102 (2004)

    Article  ADS  Google Scholar 

  11. Flajolet, P., Louchard, G.: Analytic variations on the airy distribution. Algorithmica 31(3), 361–377 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forrester, P.J.: Random walks and random permutations. J. Phys. A 34(31), L417 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Forrester, P.J.: Log-gases and random matrices (LMS-34). Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  14. Forrester, P.J., Majumdar, S.N., Schehr, G.: Non-intersecting brownian walkers and yang-mills theory on the sphere. Nucl. Phys. B 844(3), 500–526 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Janson, S.: Brownian excursion area, Wright’s constants in graph enumeration, and other brownian areas. Probab. Surv. 4, 80–145 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242(1–2), 277–329 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45, 3058 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kearney, M.J., Majumdar, S.N., Martin, R.J.: The first-passage area for drifted brownian motion and the moments of the airy distribution. J. Phys. A 40, F863 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kessler, D., Medallion, S., Barkai, E.: The distribution of the area under a bessel excursion and its moments. J. Stat. Phys. 156, 686–706 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kobayashi, N., Izumi, M., Katori, M.: Maximum distributions of bridges of noncolliding brownian paths. Phys. Rev. E 78, 051102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Laurenzi: Polynomials associated with the higher derivatives of the airy functions \(ai(z)\) and \(ai^{\prime }(z)\). arXiv:1110.2025 (2011)

  22. Louchard, G.: Kac’s formula, levy’s local time and brownian excursion. J. Appl. Probab. 21, 479 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Majumdar, S., Comtet, A.: Exact maximal height distribution of fluctuating interfaces. Phys. Rev. Lett. 92, 225501 (2004)

    Article  ADS  Google Scholar 

  24. Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89(12), 2076 (2005)

    MathSciNet  Google Scholar 

  25. Majumdar, S.N., Comtet, A.: Airy distribution function: from the area under a brownian excursion to the maximal height of fluctuating interfaces. J. Stat. Phys. 119, 777–826 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Medalion, S., Aghion, E., Meirovitch, H., Barkai, E., Kessler, D.A.: Fluctuations of ring polymers. arXiv:1501.06143 (2015)

  27. Nadal, C., Majumdar, S.N.: Nonintersecting brownian interfaces and wishart random matrices. Phys. Rev. E 79, 061117 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nagao, T.: Dynamical correlations for vicious random walk with a wall. Nucl. Phys. B 658(3), 373–396 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Novak, J.: Vicious walkers and random contraction matrices. Int. Math. Res. Not. 17, 3310–3327 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Saito, N., Yukito, I., Hukushima, K.: Multicanonical sampling of rare events in random matrices. Phys. Rev. E 82, 031142 (2010)

    Article  ADS  Google Scholar 

  31. Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Eur. Lett. 91(6), 60006 (2010)

    Article  ADS  Google Scholar 

  32. Schehr, G., Majumdar, S.N., Comtet, A., Forrester, P.J.: Reunion probability of n vicious walkers: typical and large fluctuations for large N. J. Stat. Phys. 2013, 1–40 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Schehr, G., Majumdar, S.N., Comtet, A., Randon-Furling, J.: Exact distribution of the maximal height of \(p\) vicious walkers. Phys. Rev. Lett. 101, 150601 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Takács, L.: A bernoulli excursion and its various applications. Adv. Appl. Probab. 23, 557 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takács, L.: On the distribution of the integral of the absolute value of the brownian motion. Ann. Appl. Probab. 3, 186 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Takacs, L.: Limit distributions for the bernoulli meander. J. Appl. Probab. 32, 375 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tracy, C.A., Widom, H.: Nonintersecting brownian excursions. Ann. Appl. Probab. 17, 953–979 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors warmly thank N. Kobayashi and M. Katori for email correspondence regarding the simulations. We also thank E. Barkai for pointing out some references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Pérez Castillo.

Appendices

Appendix 1: Taylor Expansion of Slater’s Determinant

In this secion we discuss the Taylor expansion of a Slater determinant. Starting form the definition of the determinant and doing a Taylor expansion we write:

$$\begin{aligned} \det \limits _{1\le i,j\le N}\varphi _{n_i}(z_j)= & {} \sum _{P\in S_{N}}\text {sign}(P)\prod \limits _{i=1}^N\varphi _{n_P(i)}(z_i)\nonumber \\= & {} \sum _{P\in S_{N}}\text {sign}(P)\sum _{\ell _1,\ldots ,\ell _N\ge 0}\frac{z_1^{\ell _1}\ldots z_N^{\ell _N}}{\ell _1!\ldots \ell _N!}\prod \limits _{i=1}^N\varphi ^{(\ell _i)}_{n_{P(i)}}(0)\nonumber \\= & {} \sum _{\ell _1,\ldots ,\ell _N\ge 0}\frac{z_1^{\ell _1}\ldots z_N^{\ell _N}}{\ell _1!\ldots \ell _N!}\det \limits _{1\le i,j\le N}\varphi ^{(\ell _i)}_{n_{j}}(0)\,. \end{aligned}$$
(25)

Due to the antisymmetric properties of the determinant, only those terms in the multiple sum with different values of \(\ell \)’s are different from zero. With this in mind we rewrite the sum over the \(\varvec{\ell }=(\ell _1,\ldots ,\ell _N)\) as a sum over over \(U_{N}\) of ordered indices (let’s say \(\ell _1<\ell _2<\cdots <\ell _N\)) and then we sum over its permutation, viz.

$$\begin{aligned} \det \limits _{1\le i,j\le N}\varphi _{n_i}(z_j)= & {} \sum _{\ell _1,\ldots ,\ell _N\ge 0}\frac{z_1^{\ell _1}\ldots z_N^{\ell _N}}{\ell _1!\ldots \ell _N!}\det \limits _{1\le i,j\le N}\varphi ^{(\ell _i)}_{n_{j}}(0)\nonumber \\= & {} \sum _{\varvec{\ell }\in U_N}\frac{1}{\ell _1!\ldots \ell _N!}\sum _{P\in S_{N}} z_1^{\ell _{P(1)}}\ldots z_N^{\ell _{P(N)}}\det \limits _{1\le i,j\le N}\varphi ^{(\ell _{P(i)})}_{n_{j}}(0)\nonumber \\= & {} \sum _{\varvec{\ell }\in U_N}\frac{1}{\ell _1!\ldots \ell _N!}\sum _{P\in S_N}\text {sign}(P) z_1^{\ell _{P(1)}}\ldots z_N^{\ell _{P(N)}}\det \limits _{1\le i,j\le N}\varphi ^{(\ell _{i})}_{n_{j}}(0)\nonumber \\= & {} \sum _{\varvec{\ell }\in U_N}\frac{1}{\ell _1!\ldots \ell _N!}\det \limits _{1\le i,j\le N}[z_i^{\ell _j}]\det \limits _{1\le i,j\le N}[\varphi ^{(\ell _{i})}_{n_{j}}(0)]\,, \end{aligned}$$
(26)

as we wanted to show.

Appendix 2: Excursion

For the normalisation factor we need to derive the propagator of N vicious walkers in the semi-infinite line. This propagator is this case can be written as follows

$$\begin{aligned} G_{0}(\varvec{y},T|\varvec{x},0)=\frac{1}{T^{N/2}}\left( \frac{2}{\pi }\right) ^N\int _0^\infty \ldots \int _0^\infty dq_1\ldots dq_N\Phi ^{(0)}_{\varvec{q}}\left( \frac{\varvec{y}}{\sqrt{T}}\right) \Phi ^{(0)}_{\varvec{q}}\left( \frac{\varvec{x}}{\sqrt{T}}\right) e^{-\frac{1}{2}\varvec{q}^2}\,,\nonumber \\ \end{aligned}$$
(27)

where \(\Phi ^{(0)}_{\varvec{q}}(\varvec{x})=(1/\sqrt{N!})\det \limits _{1\le i,j\le N}[\sin (q_ix_j)]\). Using the Taylor expansion formula for the Slater determinant we arrive at

$$\begin{aligned} \Phi ^{(0)}_{\varvec{q}}(\varvec{x})=\frac{1}{\sqrt{N!}}\sum _{\varvec{s}\in U_{N}}\frac{1}{(2s_1+1)!\ldots (2s_N+1)!}\det \limits _{1\le i,j\le N}[x_i^{2s_j+1}]\det \limits _{1\le i,j\le N}[q_{i}^{2s_j+1}(-1)^{s_j}]\,,\nonumber \\ \end{aligned}$$
(28)

with \(\varvec{s}=(s_1,\ldots ,s_N)\). Noticing that the lowest contribution is obtained by of \(s_i=i-1\), we obtain

$$\begin{aligned} \Phi ^{(0)}_{\varvec{q}}\left( \frac{\varvec{x}}{\sqrt{T}}\right)&\simeq \beta _N T^{-\frac{N^2}{2}}\left[ \prod \limits _{i=1}^N x_i\right] \Delta _{N}\left( x_1^2,\ldots ,x_N^2\right) \left[ \prod \limits _{i=1}^N q_i\right] \Delta _{N}(q_1^2,\ldots q_N^2)\,, \end{aligned}$$
(29)

with \(\beta _N=(-1)^{\frac{N(N-1)}{2}}/[ 1!\cdots (2N-1)!\sqrt{N!}]\). At this stage we notice that the propagator goes like

$$\begin{aligned} G_{0}(\varvec{\epsilon },T|\varvec{x},\epsilon )\simeq & {} \beta ^2_N T^{-\frac{1}{2}N(2N+1)}\left[ \prod \limits _{i=1}^N \epsilon ^2_i\right] \Delta ^2_{N}\left( \epsilon _1^2,\ldots ,\epsilon _N^2\right) B_N\,,\nonumber \\ B_N= & {} \left( \frac{2}{\pi }\right) ^{N}\int _0^{\infty }\ldots \int _0^\infty dq_1\ldots dq_Ne^{-\frac{1}{2}\varvec{q}^2}\left[ \prod \limits _{i=1}^N q_i^2\right] \Delta _N^2(q_1^2,\ldots ,q^2_N) \nonumber \\ \end{aligned}$$
(30)

where the constant \(B_N\) is derived in Appendix 4.

For reflecting boundary conditions the expression for the propagator is the same but with the Slater determinant given by \(\Phi ^{(0)}_{\varvec{q}}(\varvec{x})=(1/\sqrt{N!})\det \limits _{1\le i,j\le N}[\cos (q_ix_j)]\). Using the expansion formula for the Slater determinant we arrive at

$$\begin{aligned} \Phi ^{(0)}_{\varvec{q}}(\varvec{x}/\sqrt{T})=\frac{1}{\sqrt{N!}}\sum _{\varvec{s}\in U_{N}}\frac{1}{(2s_1)!\cdots (2s_N)!}\det \limits _{1\le i,j\le N}[T^{-s_{j}}x_i^{2s_j}]\det \limits _{1\le i,j\le N}[q_{i}^{2s_j}(-1)^{s_j}]\,,\nonumber \\ \end{aligned}$$
(31)

with \(\varvec{s}=(s_1,\ldots ,s_N)\). Noticing that the lowest contribution is obtained by of \(s_i=i-1\), we obtain

$$\begin{aligned} \Phi ^{(0)}_{\varvec{q}}\left( \frac{\varvec{x}}{\sqrt{T}}\right)&\simeq \beta _N T^{-\frac{N(N-1)}{2}}\Delta _{N}\left( x_1^2,\ldots ,x_N^2\right) \left[ \prod \limits _{i=1}^N q_i\right] \Delta _{N}(q_1^2,\ldots q_N^2)\,, \end{aligned}$$
(32)

with \(\beta _N=(-1)^{\frac{N(N-1)}{2}}/[ 0!\cdots (2(N-1))!\sqrt{N!}]\). At this stage we notice that the propagator goes like

$$\begin{aligned} G_{0}(\varvec{\epsilon },T|\varvec{x},\epsilon )&\simeq \beta ^2_N T^{-\frac{N(2N-1)}{2}}\Delta ^2_{N}\left( \epsilon _1^2,\ldots ,\epsilon _N^2\right) F_N\,,\nonumber \\ F_N&=\left( \frac{2}{\pi }\right) ^{N}\int _0^{\infty }\cdots \int _0^\infty dq_1\cdots dq_Ne^{-\frac{1}{2}\varvec{q}^2}\Delta _N^2(q_1^2,\cdots ,q^2_N) \end{aligned}$$
(33)

where the constant \(F_N\) is derived in Appendix 1.

Appendix 3: Meander

For the case of a meander of N vicious walkers (a star with a wall) we need to integrate over the final position \(\varvec{x}\). Using the Taylor expansion of the Slater determinant as explained in the main text we can write

$$\begin{aligned}&\int _{\varvec{W}_N} d^N\varvec{x} G_N^{(1)}(\varvec{x},T|\varvec{\epsilon },0)=\sum _{\varvec{n}}\int _{\varvec{W}_N} d^N\varvec{x}\,\Phi ^{(1)}_{\varvec{n}}(\varvec{x})\overline{\Phi }^{(1)}_{\varvec{n}}(\varvec{\epsilon })e^{-E^{(1)}_{\varvec{n}} T}\nonumber \\&\simeq (2\lambda )^{\frac{N^2}{3}}\gamma _N\left[ \prod \limits _{i=1}^N \epsilon _i\right] \Delta _N(\epsilon _1^2,\ldots \epsilon _N^2)\,\sum _{\varvec{n}}B_N(\alpha _{n_1},\ldots ,\alpha _{n_N})\Delta _N(\alpha _{n_1},\dots \alpha _{n_N})e^{-E^{(1)}_{\varvec{n}} T}\,,\nonumber \\ \end{aligned}$$
(34)

where we have defined

$$\begin{aligned} B_N(\alpha _{n_1},\ldots ,\alpha _{n_N})&=\frac{1}{\prod \limits _{i=1}^N\text {Ai}'(-\alpha _{n_i})}\int _{\varvec{W}_N} d^N\varvec{x}\det \limits _{1\le i,j\le N}\left[ \text {Ai}(x_j-\alpha _{n_i})\right] \,. \end{aligned}$$
(35)

Similarly, the propagator in the denominator goes like

$$\begin{aligned} \int _{\varvec{W}_N} d^N\varvec{x} G_N^{(0)}(\varvec{x},T|\varvec{\epsilon },0)&\simeq T^{-\frac{N^2}{2}}\gamma _N F_{N}\left[ \prod \limits _{i=1}^N \epsilon _i\right] \Delta _N(\epsilon _1^2,\ldots \epsilon _N^2) \end{aligned}$$
(36)

where \(F_N\) is a constant with no simple expression.

For reflecting boundary conditions we have instead the following expression for the numerator

$$\begin{aligned}&\int _{\varvec{W}_N} d^N\varvec{x}G_{N}^{(1)}(\varvec{x},T|\varvec{\epsilon },0)=\sum _{\varvec{n}}\int _{\varvec{W}_N} d^N\varvec{x}\Psi _{\varvec{n}}^{(1)}(\varvec{x})\overline{\Psi }_{\varvec{n}}^{(1)}(\varvec{\epsilon })e^{-E_{\varvec{n}}^{(1)}T}\nonumber \\&\quad =\frac{\delta _N}{N!}\Delta _{N}(x_1^2,\ldots ,x_N^2)\sum _{\varvec{n}}\frac{\Delta _N(\beta _{n_1},\ldots ,\beta _{n_N})}{\beta _{n_1}\cdots \beta _{n_N}}e^{-E_{\varvec{n}}^{(1)}T}(2\lambda )^{\frac{N(2N-1)}{6}}(2\lambda )^{N/6}\nonumber \\&\quad \quad \int _{\varvec{W}_N} d^N\varvec{x}\frac{1}{\prod _{i=1}^N\text {Ai}(-\beta _{n_i})}\det \limits _{1\le i,j\le N}[\text {Ai}((2\lambda )^{1/3}x_j-\beta _{n_i})]\nonumber \\&\quad =\frac{\delta _N}{N!}\Delta _{N}(x_1^2,\ldots ,x_N^2)(2\lambda )^{\frac{N(2N-1)}{6}-N/6}\sum _{\varvec{n}}\frac{\Delta _N(\beta _{n_1},\ldots ,\beta _{n_N})}{\beta _{n_1}\cdots \beta _{n_N}}e^{-E_{\varvec{n}}^{(1)}T}\nonumber \\&\quad \quad \int _{\varvec{W}_N} d^N\varvec{z}\frac{1}{\prod _{i=1}^N\text {Ai}(-\beta _{n_i})}\det \limits _{1\le i,j\le N}[\text {Ai}(z_j-\beta _{n_i})]\nonumber \\&\quad =\frac{\delta _N}{N!}\Delta _{N}(x_1^2,\ldots ,x_N^2)(2\lambda )^{\frac{N(N-1)}{3}}\sum _{\varvec{n}}\frac{\Delta _N(\beta _{n_1},\ldots ,\beta _{n_N})}{\beta _{n_1}\cdots \beta _{n_N}}e^{-E_{\varvec{n}}^{(1)}T}\nonumber \\&\quad \quad \frac{1}{\prod _{i=1}^N\text {Ai}(-\beta _{n_i})}\int _{\varvec{W}_N} d^N\varvec{z}\det \limits _{1\le i,j\le N}[\text {Ai}(z_j-\beta _{n_i})] \end{aligned}$$
(37)

Appendix 4: On the Normalisation Constants

Here we derive the expressions for the two normalisation constants for the case of excursions for absorbing and reflecting boundary conditions. For both cases we recall the well-known result of Selberg’s integral [13]:

$$\begin{aligned} \frac{1}{N!}\int _0^\infty \cdots \int _0^{\infty }|\Delta (x_1,\ldots ,x_N)|^{2c}\prod \limits _{i=1}^Nx_i^{a-1}e^{-x_i} dx_i=\prod \limits _{j=0}^{N-1}\frac{\Gamma (a+jc)\Gamma ((j+1)c)}{\Gamma (c)}\nonumber \\ \end{aligned}$$
(38)

For the constant \(B_N\) we do the change of variables \(q_i^2/2=y_i\) so that \(q_i dq_i=dy_i\) or \(dq_i=\frac{dy_i}{\sqrt{2y_i}}\), so we can write

$$\begin{aligned} B_N= & {} \left( \frac{2}{\pi }\right) ^{N}\int _0^{\infty }\cdots \int _0^\infty dq_1\cdots dq_Ne^{-\frac{1}{2}\varvec{q}^2}\left[ \prod \limits _{i=1}^N q_i^2\right] \Delta _N^2(q_1^2,\cdots ,q^2_N)\nonumber \\= & {} \left( \frac{2}{\pi }\right) ^{N}2^{-N/2} 2^{N} 2^{N(N-1)}\int _0^{\infty }\cdots \int _0^\infty dy_1\cdots dy_N\prod \limits _{i=1}^Ne^{-y_i} y_i^{-1/2}\left[ \prod \limits _{i=1}^N y_i\right] \Delta _N^2(y_1,\cdots ,y_N)\nonumber \\= & {} \frac{2^{\frac{1}{2}N(2N+1)}}{\pi ^N}N!\prod \limits _{j=0}^{N-1}\Gamma \left( \frac{3}{2}+j\right) \Gamma (j+1)=\frac{2^{\frac{1}{2}N(2N+1)}}{\pi ^N}\prod \limits _{j=0}^{N-1}\Gamma (2+j)\Gamma \left( \frac{3}{2}+j\right) \end{aligned}$$
(39)

Similarly for the case of reflecting boundary conditions we have

$$\begin{aligned} F_N= & {} \left( \frac{2}{\pi }\right) ^{N}\frac{1}{2^{N/2}}2^{N(N-1)}\int _0^{\infty }\cdots \int _0^\infty dy_1\cdots dy_N\Delta _N^2(y_1,\cdots ,y_N)\prod \limits _{i=1}^Ny_i^{-1/2} e^{-y_i}\nonumber \\= & {} N!\frac{2^{\frac{N(2N-1)}{2}}}{\pi ^N}\prod \limits _{j=0}^{N-1}\Gamma \left( \frac{1}{2}+j\right) \Gamma \left( j+1\right) =\frac{2^{\frac{N(2N-1)}{2}}}{\pi ^N}\prod \limits _{j=0}^{N-1}\Gamma \left( \frac{1}{2}+j\right) \Gamma \left( j+2\right) \qquad \end{aligned}$$
(40)

Appendix 5: Derivatives of \(F(x,\gamma )\)

Starting from the following expression for \(F(x,\gamma )\):

$$\begin{aligned} F(x,\gamma )=\frac{\sqrt{3}}{x\sqrt{\pi }}u^{2/3}(x,\gamma )e^{-u(x,\gamma )}U\left( \frac{1}{6},\frac{4}{3},u(x,\gamma )\right) \,,\quad u(x,\gamma )=\frac{2\gamma ^3}{27x^2}\,, \end{aligned}$$
(41)

and using the following property

$$\begin{aligned} x\frac{\partial U(a,b,x)}{\partial x}=(a-b+x)U(a,b,x)-U(a-1,b,x)\,, \end{aligned}$$
(42)

we notice that we can write the expression

$$\begin{aligned} \frac{\partial ^n F(x,\gamma )}{\partial x^n}=\frac{\sqrt{3}}{x^{n+1}\sqrt{\pi }}u^{2/3}(x,\gamma )e^{-u(x,\gamma )}\sum _{\ell =0}^n C^{(n)}_{\ell }U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) \,. \end{aligned}$$
(43)

for some set of coefficients \(\{C^{(n)}_\ell \}\) still to be determined. The expression (43) is certainly correct for \(n=1\) and \(n=2\). Let us them assume is holds for any n and performe one more derivative with respect to n:

$$\begin{aligned}&\frac{\partial ^{n+1} F(x,\gamma )}{\partial x^{n+1}} =\frac{1}{x^{n+2}\sqrt{3\pi }}u^{2/3}(x,\gamma )e^{-u(x,\gamma )}\nonumber \\&\sum \limits _{\ell =0}^n C^{(n)}_{\ell }\left[ (-7-3n+6u(x,\gamma ))U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) \right. \nonumber \\&\left. -6u(x,\gamma )U'\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) \right] \,. \end{aligned}$$
(44)

But using the property (42), we can write

$$\begin{aligned}&u(x,\gamma )U'\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) =\left( \frac{1}{6}-\ell -\frac{4}{3}+u\right) \nonumber \\&U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) -U\left( \frac{1}{6}-\ell -1,\frac{4}{3},u(x,\gamma )\right) \,. \end{aligned}$$
(45)

Gathering results we find

$$\begin{aligned}&\frac{\partial ^{n+1}F(x,\gamma )}{\partial x^{n+1}}=\frac{\sqrt{3}}{x^{n+2}\sqrt{\pi }}u^{2/3}(x,\gamma )e^{-u(x,\gamma )}\nonumber \\&\sum \limits _{\ell =0}^n C^{(n)}_{\ell }\left[ (-n +2\ell )U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) +2U\left( \frac{1}{6}-\ell -1,\frac{4}{3},u(x,\gamma )\right) \right] \,.\qquad \end{aligned}$$
(46)

On the other hand, we want to write this result as (43) for \(n\rightarrow n+1\). This implies to rewrite the sum as:

$$\begin{aligned}&\sum \limits _{\ell =0}^n C^{(n)}_{\ell }\left[ (-n +2\ell )U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) +2U\left( \frac{1}{6}-\ell -1,\frac{4}{3},u(x,\gamma )\right) \right] \nonumber \\&=\sum \limits _{\ell =0}^n C^{(n)}_{\ell }(-n +2\ell )U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) +2\sum \limits _{\ell =0}^k C^{(n)}_{\ell }U\left( \frac{1}{6}-\ell -1,\frac{4}{3},u(x,\gamma )\right) \nonumber \\&=\sum \limits _{\ell =0}^n C^{(n)}_{\ell }(-n +2\ell )U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) +2\sum \limits _{\ell =1}^{n+1} C^{(n)}_{\ell -1}U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) \nonumber \\&=\sum \limits _{\ell =0}^{n+1} C^{(n+1)}_{\ell }U\left( \frac{1}{6}-\ell ,\frac{4}{3},u(x,\gamma )\right) \,. \end{aligned}$$
(47)

This results in the following set of recurrence relations for the set of coefficents \(\{C_{\ell }^{(n)}\}\):

$$\begin{aligned} C^{(n+1)}_0= & {} -nC_{0}^{(n)}\,,\nonumber \\ C_{\ell }^{(n+1)}= & {} C_{\ell }^{(n)}(-n+2\ell )+2C_{\ell -1}^{(n)}\,,\quad \ell =1,\ldots ,n\,,\nonumber \\ C_{n+1}^{(n+1)}= & {} 2C_{n}^{(n)}\,, \end{aligned}$$
(48)

with the initial condition \(C_0^{(0)}=1\). By checking explicitly the value of some of these coeffcients, and with the help of the Sloane databaseFootnote 2, we arrive at the solution:

$$\begin{aligned} C^{(n)}_\ell =\frac{n!}{2^{n-2\ell } (n-\ell )!(2\ell -n)!}\,,\quad \ell =0,\ldots ,n\,. \end{aligned}$$
(49)

A Similar analysis can be perform ny doing derivatives with respect to \(\gamma \). Starting from (43) one notices that

$$\begin{aligned}&\frac{\partial ^{k+n} F(x,\gamma )}{\partial \gamma ^k\partial x^n}=\frac{\sqrt{3}}{x^{n+1}\sqrt{\pi }\gamma ^{k}}u^{2/3}(x,\gamma )e^{-u(x,\gamma )}\nonumber \\&\sum _{\ell =0}^{n}\sum _{s=0}^{k}C^{(n)}_{\ell } D^{(k)}_{s}(\ell )U\left( \frac{1}{6}-\ell -s,\frac{4}{3},u(x,\gamma )\right) \,, \end{aligned}$$
(50)

for some set of coefficients \(\{D_s^{(k)}(\ell )\}\). Performing one more derivative with respect to \(\gamma \) allows us to arrive at the following set of recurrence relations for those, viz.

$$\begin{aligned} D_0^{(k+1)}(\ell )= & {} -\left( \frac{3}{2}+k+3\ell \right) D_{0}^{(k)}(\ell )\,,\nonumber \\ D_{s}^{(k+1)}(\ell )= & {} -\left( \frac{3}{2}+k+3\ell +3s\right) D_{s}^{(k)}(\ell )-3D_{s-1}^{(k)}(\ell )\,,\quad \quad s=1,\ldots ,k\,,\nonumber \\ D_{k+1}^{(k+1)}(\ell )= & {} -3D_{k}^{(k)}(\ell )\,, \end{aligned}$$
(51)

with the initial condition \(D_0^{(0)}(\ell )=1\). As we are only interested in the orders \(k=0\) and \(k=2\), we do not need a general solution. This yields

$$\begin{aligned} D_0^{(0)}(\ell )= & {} 1\,,\nonumber \\ D_{0}^{(1)}(\ell )= & {} -\frac{3}{2}\left( 1+2\ell \right) \,,\quad \quad D_{1}^{(1)}(\ell )=-3\,\nonumber \\ D_0^{(2)}(\ell )= & {} \frac{3}{4} (1 + 2\ell ) (5 + 6\ell )\,,\quad \quad D_1^{(2)}(\ell )=3(7+6\ell )\,,\quad \quad D_2^{(2)}(\ell )=9\,. \end{aligned}$$
(52)

Appendix 6: Moments

We first recall the following identity

$$\begin{aligned} \int _0^{\infty } ds s^{\mu } e^{-xs}=\frac{\Gamma (\mu +1)}{x^{1+\mu }}\,. \end{aligned}$$
(53)

From here we write

$$\begin{aligned} M_{-(1+\mu )}= & {} \int _0^\infty dx x^{-(1+\mu )} F(x)\nonumber \\= & {} \frac{1}{\Gamma (\mu +1)}\int _0^\infty dx F(x)\int _0^{\infty } ds s^{\mu } e^{-xs}\nonumber \\= & {} \frac{1}{\Gamma (\mu +1)}\int _0^{\infty } ds s^{\mu }\int _0^\infty dx F(x) e^{-xs}\nonumber \\= & {} \frac{1}{\Gamma (\mu +1)}\int _0^{\infty } ds s^{\mu }\widehat{F}(s)\nonumber \\= & {} \frac{1}{\Gamma (\mu +1)}\int _0^{\infty } ds s^{\mu +E}e^{-as^{2/3}} \end{aligned}$$
(54)

But

$$\begin{aligned} \int _0^{\infty } ds s^{\mu +E}e^{-as^{2/3}}= & {} \int _0^{\infty } ds (s^{2/3})^{\frac{3}{2}(\mu +E)}e^{-as^{2/3}}\nonumber \\= & {} \frac{3}{2}\int _0^{\infty } dy y^{\frac{3}{2}(\mu +E)+1/2}e^{-a y}\nonumber \\= & {} \frac{3}{2}a^{-\frac{3}{2}(\mu +E+1)}\int _0^{\infty } dy y^{\frac{3}{2}(\mu +E)+1/2}e^{- y}\nonumber \\= & {} \frac{3}{2}a^{-\frac{3}{2}(\mu +E+1)}\Gamma \left( \frac{3}{2}(\mu +E+1)\right) \end{aligned}$$
(55)

Thus denoting \(\nu =1+\mu \) we finally have

$$\begin{aligned} M_{-\nu }=\frac{3}{2}a^{-\frac{3}{2}(\nu +E)}\frac{\Gamma \left( \frac{3}{2}(\nu +E)\right) }{\Gamma (\nu )} \end{aligned}$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, I.P., Boyer, D. A Generalised Airy Distribution Function for the Accumulated Area Swept by N Vicious Brownian Paths. J Stat Phys 162, 1587–1607 (2016). https://doi.org/10.1007/s10955-016-1467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1467-2

Keywords

Navigation