Skip to main content
Log in

Nonequilibrium Langevin Equation and Effective Temperature for Particle Interacting with Spatially Extended Environment

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate a novel type of Langevin model that describes the nonequilibrium dynamics of a classical particle interacting with a spatially extended environment. In this model, a particle, which interacts with the environment through the nonlinear interaction Hamiltonian, is driven by a constant external force, and subsequently, it reaches a nontrivial nonequilibrium steady state. We derive an effective Langevin equation for the particle in the nonequilibrium steady states. Using this equation, we calculate the effective temperature defined as the ratio of the correlation function of the velocity fluctuation to the linear response function with respect to a small perturbation. As a result, it is shown that the effective temperature associated with the time scale of the particle is identical to the kinetic temperature if the time scale of the environment and that of the particle are well separated. Furthermore, a noteworthy expression, which relates the kinetic temperature with the curvature of the driving force-mean velocity curve, is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hänggi, P., Talkner, P., Brorkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  3. Hänggi, P., Marchesoni, F.: Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  4. Huang, R., Chavez, I., Taute, K.M., Lukic, B., Jeney, S., Raizen, M.G., Florin, E.: Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576 (2011)

    Article  Google Scholar 

  5. Mason, T.G., Weitz, D.A.: Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250 (1995)

    Article  ADS  Google Scholar 

  6. Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C.: Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370 (2007)

    Article  ADS  Google Scholar 

  7. Toyabe, S., Sano, M.: Energy dissipation of a Brownian particle in a viscoelastic fluid. Phys. Rev. E 77, 041403 (2008)

    Article  ADS  Google Scholar 

  8. Bedeaux, D., Mazur, P.: Brownian motion and fluctuating hydrodynamics. Physica 76, 247 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ojha, R.P., Lemieux, P.-A., Dixon, P.K., Liu, A.J., Durian, D.J.: Statistical mechanics of a gas-fluidized particle. Nature 427, 521 (2004)

    Article  ADS  Google Scholar 

  10. Cugliandolo, L.F., Kurchan, J., Peliti, L.: Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898 (1997)

    Article  ADS  Google Scholar 

  11. Berthier, L., Barrat, J.-L., Kurchan, J.: A two-time-scale, two-temperature scenario for nonlinear rheology. Phys. Rev. E 61, 5464 (2000)

    Article  ADS  Google Scholar 

  12. Berthier, L., Barrat, J.-L.: Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid. J. Chem. Phys. 116, 6228 (2002)

    Article  ADS  Google Scholar 

  13. Herisson, D., Ocio, M.: Fluctuation-dissipation ratio of a spin glass in the aging regime. Phys. Rev. Lett. 88, 257202 (2002)

    Article  ADS  Google Scholar 

  14. Joly, L., Merabia, S., Barrat, J.-L.: Effective temperatures of a heated Brownian particle. Europhys. Lett. 94, 50007 (2011)

    Article  ADS  Google Scholar 

  15. Miyazaki, K., Bedeaux, D.: Brownian motion in a fluid in simple shear flow. Physica A 217, 53 (1995)

    Article  ADS  Google Scholar 

  16. Maes, C.: On the second fluctuation-dissipation theorem for nonequilibrium baths. J. Stat. Phys. 154, 705 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Weiss, U.: Quantum Dissipation Systems. World Scientific, Singapore (2012)

  18. Hayashi, K., Sasa, S.-I.: Effective temperature in nonequilibrium steady states of Langevin systems with a tilted periodic potential. Phys. Rev. E 69, 066119 (2004)

    Article  ADS  Google Scholar 

  19. Hayashi, K., Takano, M.: Temperature of a Hamiltonian system given as the effective temperature of a nonequilibrium steady-state Langevin thermostat. Phys. Rev. E 76, 050104(R) (2007)

    Article  ADS  Google Scholar 

  20. Villamaina, D., Baldassarri, A., Puglisi, A., Vulpiani, A.: The fluctuation-dissipation relation: how does one compare correlation functions and responses?. J. Stat. Mech. P07024 (2009)

  21. Colangeli, M., Lucarini, V.: Elements of a unified framework for response formulae. J. Stat. Mech. P01002 (2014)

  22. Baiesi, M., Maes, C.: An update on the nonequilibrium linear response. New J. Phys. 15, 013004 (2013)

    Article  ADS  Google Scholar 

  23. Anna, G.D., Mayor, P., Barrat, A., Loreto, V., Nori, F.: Observing brownian motion in vibration-fluidized granular matter. Nature 424, 909 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We express special thanks to Shin-ichi Sasa for continuous discussions. We also thank T. Kawakatsu for useful discussions. The present study was supported by KAKENHI Nos. 22340109 and 25103002 and by the JSPS Core-to-Core program “Non-equilibrium dynamics of soft-matter and information.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiki Haga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haga, T. Nonequilibrium Langevin Equation and Effective Temperature for Particle Interacting with Spatially Extended Environment. J Stat Phys 159, 713–729 (2015). https://doi.org/10.1007/s10955-015-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1195-z

Keywords

Navigation