Skip to main content
Log in

Microcanonical Analysis of the Random Energy Model in a Random Magnetic Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the spin glass system consisting of a Random Energy Model coupled with a random magnetic field. This system was investigated by de Oliveira Filho et al. (Phys Rev E 74:031117, 2006) who computed the free energy. In this paper, we recover their result rigorously using elementary large deviations arguments and a conditional second moment method. Our analysis extends at the level of fluctuations of the ground states. In particular, we prove that the joint distribution of the minimal energies has the law of a Poisson process with exponential density after a recentering, which is random as opposed to the standard REM. One consequence is that the Gibbs measure of the model exhibits a one-step replica symmetry breaking as argued by de Oliveira Filho et al. using the replica method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130(3), 489–528 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Amaro de Matos, J.M.G., Fernando Perez, J.: Fluctuations in the Curie–Weiss version of the random field Ising model. J. Stat. Phys. 62(3–4), 587–608 (1991)

    Article  MATH  ADS  Google Scholar 

  3. Bolthausen, E., Kistler, N.: Universal structures in some mean field spin glasses and an application. J. Math. Phys. 49(12), 125205 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bovier, A., Klimovsky, A.: Fluctuations of the partition function in the generalized random energy model with external field. J. Math. Phys. 49(12), 125205 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bovier, A., Kurkova, I., Löwe, M.: Fluctuations of the free energy in the REM and the \(p\)-spin SK models. Ann. Probab. 30(2), 605–651 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bricmont, J., Kupiainen, A.: Phase transition in the 3d random field Ising model. Commun. Math. Phys. 116(4), 539–572 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  7. de Oliveira Filho, L.O., da Costa, F.A., Yokoi, C.S.O.: Random-energy model in random fields. Phys. Rev. E 74, 031117 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. den Hollander, F.: Large Deviations. Volume 14 of Fields Institute Monographs. American Mathematical Society, Providence (2000)

    Google Scholar 

  9. Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45(2), 79–82 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3) 24(5), 2613–2626 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  11. Dorlas, T.C., Wedagedera, J.R.: Large deviations and the random energy model. Int. J. Mod. Phys. B 15(1), 1–15 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Durrett, R.: Probability: theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics, 4th edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  13. Eisele, T.: On a third-order phase transition. Commun. Math. Phys. 90(1), 125–159 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Fisher, D.S., Fröhlich, J., Spencer, T.: The Ising model in a random magnetic field. J. Stat. Phys. 34(5–6), 863–870 (1984)

    Article  ADS  Google Scholar 

  15. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Imbrie, J.Z.: The ground state of the three-dimensional random-field Ising model. Commun. Math. Phys. 98(2), 145–176 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Löwe, M., Meiners, R.: Moderate deviations for random field Curie–Weiss models. J. Stat. Phys. 149(4), 701–721 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Löwe, M., Meiners, R., Torres, F.: Large deviations principle for Curie-Weiss models with random fields. J. Phys. A 46(12), 125004 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  19. Meiners, R., Reichenbachs, A.: On the accuracy of the normal approximation for the free energy in the random energy model. Electron. Commun. Probab. 18(12), 11 (2013)

    MathSciNet  Google Scholar 

  20. Olivieri, E., Picco, P.: On the existence of thermodynamics for the random energy model. Commun. Math. Phys. 96(1), 125–144 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Panchenko, D.: The Sherrington–Kirkpatrick model. Springer Monographs in Mathematics. Springer, New York (2013)

    Google Scholar 

  22. Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108(2), 225–239 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Salinas, S.R., Wreszinski, W.F.: On the mean-field Ising model in a random external field. J. Stat. Phys. 41(1–2), 299–313 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. Talagrand, M.: Spin glasses: a challenge for mathematicians, volume 46 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin, (2003). Cavity and mean field models.

  25. Toninelli, F.L.: Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. 18(4), 1569–1587 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the referees and Roberto Persechino for their careful reading and comments that helped improve the first version of this article. L.-P. A. is supported by a NSERC Discovery Grant and a Grant FQRNT Nouveaux chercheurs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis-Pierre Arguin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arguin, LP., Kistler, N. Microcanonical Analysis of the Random Energy Model in a Random Magnetic Field. J Stat Phys 157, 1–16 (2014). https://doi.org/10.1007/s10955-014-1072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1072-1

Keywords

Mathematics Subject Classification

Navigation