Skip to main content
Log in

Anomalous Fluctuations in the Motion of Partitioning Objects

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study how an object that partitions in two its thermally agitated environment relaxes to its equilibrium fluctuations. Event-driven molecular dynamics indicate that a conventional diffusive-like bound-Brownian motion is reached after a long-lived sub-diffusive regime. The two-stage behavior is not eliminated increasing the number of agitated particles, suggesting that the origin of the effect is a topologically frustrated exploration of phase-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Astumian, R.D.: Thermodynamics and kinetics of a Brownian motor. Science 276, 917 (1997)

    Article  Google Scholar 

  2. Lipowsky, R., Klumpp, S., Nieuwenhuizen, T.M.: Random walks of cytoskeletal motors in open and closed compartments. Phys. Rev. Lett. 87, 108101 (2001)

    Article  ADS  Google Scholar 

  3. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003)

    Article  ADS  Google Scholar 

  5. Callen, H.B.: Thermodynamics. Wiley, New York (1960)

    MATH  Google Scholar 

  6. Feynman, R.P., Leighton, R., Sands, M.: The Feynman Lectures on Physics I. Addison-Wesley, Reading (1963), ch. 39. Specifically, in paragraph 39–4 the authors indicate how the final equilibrium is reached because of the fluctuations in the two sections. When the two sections are, for example, at initial different temperatures and volumes such that they are in pressure equilibrium, even though separated by the adiabatic wall, they will reach a final equal temperature and volume spontaneously, i.e., with an increase in entropy of the isolated system.

  7. Crosignani, B., Di Porto, P., Segev, M.: Approach to thermal equilibrium in a system with adiabatic constraints. Am. J. Phys. 64, 610 (1996)

    Article  ADS  Google Scholar 

  8. Lieb, E.H.: Some problems in statistical mechanics that I would like to see solved. Phys. A 263, 491 (1999)

    Article  MathSciNet  Google Scholar 

  9. Cencini, M., Palatella, L., Pigolotti, S., Vulpiani, A.: Macroscopic equations for the adiabatic piston. Phys. Rev. E 76, 051103 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. For a full list of references on the adiabatic piston, see Castiglione, P., Falcioni, M., Lesne, A., Vulpiani, A.: Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press, Cambridge (2008)

  11. DelRe, E., Crosignani, B., Di Porto, P., Di Sabatino, S.: Built-in reduction of statistical fluctuations of partitioning objects. Phys. Rev. E 84, 021112 (2011)

    Article  ADS  Google Scholar 

  12. Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I France 2, 1705 (1992)

    Article  Google Scholar 

  13. Brokmann, X., Hermier, J.P., Messin, G., Desbiolles, P., Bouchaud, J.P., Dahan, M.: Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003)

    Article  ADS  Google Scholar 

  14. Leuzzi, L., Nieuwenhuizen, T.M.: Thermodynamics of the Glassy State. Taylor and Francis, New York (2008)

    MATH  Google Scholar 

  15. Tanaka, H., Kawasaki, T., Shintani, H., Watanabe, K.: Critical-like behaviour of glass-forming liquids. Nat. Mater. 9, 324 (2010)

    Article  ADS  Google Scholar 

  16. Burov, S., Barkai, E.: Residence time statistics for N renewal processes. Phys. Rev. Lett. 107, 170601 (2011)

    Article  ADS  Google Scholar 

  17. Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)

    Article  ADS  Google Scholar 

  18. Stumpf, M.P.H., Porter, M.A.: Critical truths about power laws. Science 335, 665 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Gradenigo, G., Puglisi, A., Sarracino, A., Vulpiani, A., Villamaina, D.: The out of equilibrium response function in sub-diffusive systems. Phys. Scr. 86, 058516 (2012)

    Article  Google Scholar 

  21. Lutz, E., Renzoni, F.: Beyond Boltzmann–Gibbs statistical mechanics in optical lattices. Nat. Phys. 9, 615 (2013)

    Article  Google Scholar 

  22. Rapaport, D.C.: The event scheduling problem in molecular dynamic simulation. J. Comput. Phys. 34, 184 (1980)

    Article  ADS  Google Scholar 

  23. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  24. Alder, B.J., Wainwright, T.E.: Decay of the velocity autocorrelation function. Phys. Rev. A 1, 18 (1970)

    Article  ADS  Google Scholar 

  25. Chernov, N., Lebowitz, J.L.: Dynamics of a massive piston in an ideal gas: oscillatory motion and approach to equilibrium. J. Stat. Phys. 109, 507 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. White, J.A., Roman, F.L., Gonzalez, A., Velasco, S.: The “adiabatic” piston at equilibrium: spectral analysis and time-correlation function. Europhys. Lett. 59, 479 (2002)

    Article  ADS  Google Scholar 

  27. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Di Porto, P., Di Sabatino, S., Crosignani, B., DelRe, E.: Power-law relaxation and cumulative information. J. Stat. Phys. 153, 479 (2013)

    Article  ADS  Google Scholar 

  29. Freckleton, R.P., Sutherland, W.J.: Hospital waiting-lists (Communication arising): do power laws imply self-regulation? Nature 413, 382 (2001)

    Article  ADS  Google Scholar 

  30. Sornette, D.: Mechanism for powerlaws without self-organization. Int. J. Mod. Phys. C 13, 133 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Angelo Vulpiani for useful discussions. Stefano Di Sabatino is now with LPT-IRSAMC, Université Paul Sabatier - Toulouse, France. The research leading to these results was supported by funding from the Italian Ministry of Research (MIUR) through the “Futuro in Ricerca” FIRB Grant PHOCOS-RBFR08E7VA. Partial funding was received through the SMARTCONFOCAL project of the Regione Lazio and through the PRIN Project No. 2012BFNWZ2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. DelRe.

Appendix

Appendix

We note that our study of fluctuations in partitioning object position \(x\) gives us direct information on its velocity correlation function. In fact, starting from \(x(0)=0\), we have

$$\begin{aligned} x(t)=\int \limits _0^tdt'v(t'), \end{aligned}$$
(2)

that is,

$$\begin{aligned} \langle x^2(t) \rangle =\int \limits _0^tdt'\int _0^tdt''\langle v(t')v(t'') \rangle , \end{aligned}$$
(3)

from which we obtain

$$\begin{aligned} \frac{d}{dt}\langle x^2(t) \rangle =\int \limits _0^tdt''\langle v(t)v(t'')\rangle \nonumber \\ +\int \limits _0^tdt'\langle v(t')v(t)\rangle \nonumber \\ =2\int \limits _0^tdt'\langle v(t')v(t)\rangle , \end{aligned}$$
(4)

i.e., after setting \(\theta =t'-t\),

$$\begin{aligned} \frac{d}{dt}\langle x^2(t) \rangle =2\int \limits _{-t}^0d\theta \langle v(t)v(t+\theta )\rangle . \end{aligned}$$
(5)

Since we are interesting in the behavior for large values of \(t\) and, as we will see, the velocity correlation time tends to vanish as \(t\) increases, Eq. (5) can be approximated as

$$\begin{aligned} \frac{d}{dt}\langle x^2(t) \rangle =2\int \limits _{-\infty }^0d\theta \langle v(t)v(t+\theta )\rangle . \end{aligned}$$
(6)

If we reasonably assume a Gaussian decay \(\langle v(t)v(t+\theta )\rangle \sim \exp {(-C(t)\theta ^2)}\) (for \(\theta <0\)) and recall that, after a short initial transient, \(\langle v^2(t) \rangle \) reaches its equilibrium value \(kT/M\), Eq. (6) gives

$$\begin{aligned} \frac{d}{dt}\langle x^2(t) \rangle&= 2 \frac{kT}{M}\int \limits _{-\infty }^0d\theta \exp {(-C(t)\theta ^2)} \nonumber \\&= \sqrt{\frac{\pi }{C(t)}}\frac{kT}{M}. \end{aligned}$$
(7)

We now consider the two situations characterized by exponential and power law behavior of \(\langle x^2(t) \rangle \), i.e., in particular, diathermal and adiabatic partitioning objects,

$$\begin{aligned} \langle x^2(t)\rangle = \langle x^2\rangle _{\text {EQ}}[1-\exp {(-t/\tau )}], \end{aligned}$$
(8)
$$\begin{aligned} \langle x^2(t) \rangle =\langle x^2 \rangle _{\text {EQ}}[1-(\tau '/t)^{\alpha }], 0<\alpha <1. \end{aligned}$$
(9)

In the first case, from Eq. (8), we have

$$\begin{aligned} \frac{d}{dt}\langle x^2 \rangle =\frac{\langle x^2 \rangle _{\text {EQ}}}{\tau }e^{-t/\tau }, \end{aligned}$$
(10)

while in the second case, Eq. (9) leads to

$$\begin{aligned} \frac{d}{dt}\langle x^2 \rangle =\langle x^2 \rangle _{\text {EQ}}\alpha (\tau )'^{\alpha }t^{-\alpha -1}. \end{aligned}$$
(11)

Comparing Eqs. (10,11) with Eq. (7), we obtain, respectively,

$$\begin{aligned} C(t)&= \pi \frac{k^2T^2\tau ^2}{M^2 \langle x^2 \rangle _{\text {EQ}}^2}e^{\frac{2t}{\tau }},\end{aligned}$$
(12)
$$\begin{aligned} C(t)&= \pi \frac{k^2T^2}{M^2 (\tau ')^{2\alpha }\alpha ^2\langle x^2 \rangle ^2_{\text {EQ}}}t^{2\alpha +2}. \end{aligned}$$
(13)

For a Gaussian behavior \(\exp {(-C(t)\theta ^2)}\) the typical decay time is given by \(C(t)^{-1/2}\), so that the velocity self-correlation times \(\tau _{c,exp}\) and \(\tau _{c,pl}\) are

$$\begin{aligned} \tau _{c,exp}(t)&= \frac{M\langle x^2\rangle _{\text {EQ}}}{\sqrt{\pi }kT\tau }e^{-t/\tau }.\end{aligned}$$
(14)
$$\begin{aligned} \tau _{c,pl}(t)&= \frac{M\langle x^2 \rangle _{\text {EQ}}}{\sqrt{\pi }kT}\tau _{pl}^{\alpha }\alpha t^{-\alpha -1}. \end{aligned}$$
(15)

Interestingly, the characteristic velocity memory times tend to vanish as \(t\) increases either following an exponential or a power-law depending on whether \(\langle x^2 \rangle \) approaches its equilibrium value \(\langle x^2\rangle _{\text {EQ}}\) with an exponential or a power-law behavior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DelRe, E., Di Sabatino, S., Di Porto, P. et al. Anomalous Fluctuations in the Motion of Partitioning Objects. J Stat Phys 156, 291–300 (2014). https://doi.org/10.1007/s10955-014-1001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1001-3

Keywords

Navigation