Skip to main content
Log in

Power-Law Relaxation and Cumulative Information

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We associate the cumulative information of a system relaxing towards equilibrium with a divergent integral when a power-law relaxation holds. We discuss and illustrate numerically how this implies that a system that relaxes to equilibrium through a power-law has a cumulative information content that progressively diverges from that of its equilibrium realization to which it is relaxing. Our findings shed light on some aspects of weak ergodicity breaking and suggest that power-laws imply a form of complexity that does not require dissipation or built-in disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Our attention is on systems that relax with traits of out-of-equilibrium physics, which means that each trajectory has memory. Should we evaluate S(t) along the single trajectories of m(t) (or equivalently s(t)), the information content would be intrinsically less than the S(t) of Eq. (5), weakening any form of argument based on the divergence of a time integration. Therefore, we are required to underline that Eq. (5) holds and is meaningful, representing the cumulative information content of the stochastic process, in so much that the single p n (t) are statistically independent from the same quantities at previous times.

References

  1. Christensen, K., Danon, L., Scanlon, T., Bak, P.: Unified scaling law for earthquakes. Proc. Natl. Acad. Sci. USA 99, 2509 (2002)

    Article  ADS  Google Scholar 

  2. Lillo, F., Mantenga, R.N.: Power-law relaxation in a complex system: Omori law after a financial market crash. Phys. Rev. E 68, 016119 (2003)

    Article  ADS  Google Scholar 

  3. Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. 2, 1705 (1992)

    Google Scholar 

  4. Brokmann, X., Hermier, J.P., Messin, G., Desbiolles, P., Bouchaud, J.P., Dahan, M.: Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 90, 120601 (2003)

    Article  ADS  Google Scholar 

  5. Burov, S., Barkai, E.: Cooperative rearrangement regions and dynamical heterogeneities in colloidal glasses with attractive versus repulsive interactions. Phys. Rev. Lett. 107, 170601 (2011)

    Article  ADS  Google Scholar 

  6. Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)

    Article  ADS  Google Scholar 

  7. Fulinski, A.: Anomalous diffusion and weak nonergodicity. Phys. Rev E 83, 061140 (2011)

    Article  ADS  Google Scholar 

  8. Jeon, J.H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sorensen, K., Oddershede, L., Metzler, R.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011)

    Article  ADS  Google Scholar 

  9. Leijnse, N., Jeon, J.H., Loft, S., Metzler, R., Oddershede, L.B.: Diffusion inside living human cells. Eur. Phys. J. Spec. Top. 204, 75 (2012)

    Article  Google Scholar 

  10. Chamberlin, R.V.: Universalities in the primary response of condensed matter. Europhys. Lett. 33, 545 (1996)

    Article  ADS  Google Scholar 

  11. Jonscher, A.K.: Dielectric relaxation in solids. J. Phys. D, Appl. Phys. 32, R57 (1996)

    Article  Google Scholar 

  12. Sornette, D.: Probability distributions in complex systems. In: Encyclopedia of Complexity and Systems Science, pp. 7009–7024 (2009)

    Chapter  Google Scholar 

  13. Tanaka, H., Kawasaki, T., Shintani, H., Watanabe, K.: Critical-like behaviour of glass-forming liquids. Nat. Mater. 9, 324 (2010)

    Article  ADS  Google Scholar 

  14. DelRe, E., Crosignani, B., Di Porto, P., Di Sabatino, S.: Built-in reduction of statistical fluctuations of partitioning objects. Phys. Rev. E 84, 021112 (2011)

    Article  ADS  Google Scholar 

  15. Bel, G., Barkai, E.: Weak ergodicity breaking in the continuous-time random walk. Phys. Rev. Lett. 94, 240602 (2005)

    Article  ADS  Google Scholar 

  16. Burov, S., Barkai, E.: Residence time statistics for N renewal processes. Phys. Rev. Lett. 107, 170601 (2011)

    Article  ADS  Google Scholar 

  17. Bardou, F., Bouchaud, J.P., Emile, O., Aspect, A., Cohen-Tannoudji, C.: Subrecoil laser cooling and Lévy flights. Phys. Rev. Lett. 72, 203 (1994)

    Article  ADS  Google Scholar 

  18. Lutz, E.: Power-law tail distributions and nonergodicity. Phys. Rev. Lett. 93, 190602 (2004)

    Article  ADS  Google Scholar 

  19. Berkowitz, A.E., Mitchell, J.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A., Thomas, G.: Giant magnetoresistance in heterogeneous Cu–Co alloys. Phys. Rev. Lett. 68, 3745 (1992)

    Article  ADS  Google Scholar 

  20. McElroy, K., Lee, J., Slezak, J.A., Lee, D.H., Eisaki, H., Uchida, S., Davis, J.C.: Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048 (2005)

    Article  ADS  Google Scholar 

  21. DelRe, E., Spinozzi, E., Agranat, A.J., Conti, C.: Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat. Photonics 5, 39 (2011)

    Article  ADS  Google Scholar 

  22. Chen, T.J., Huang, S.X., Chien, C.L., Stiles, M.D.: Enhanced magnetoresistance induced by spin transfer torque in granular films with a magnetic field. Phys. Rev. Lett. 96, 207203 (2006)

    Article  ADS  Google Scholar 

  23. Xiong, P., Xiao, G., Wang, J.Q., Xiao, J.Q., Jiang, J.S., Chien, C.L.: Extraordinary Hall effect and giant magnetoresistance in the granular Co–Ag system. Phys. Rev. Lett. 69, 3220 (1992)

    Article  ADS  Google Scholar 

  24. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108, 171 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  25. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Marshall, T.W.: Brownian motion, the second law and Boltzmann. Eur. J. Phys. 3, 215 (1982)

    Article  Google Scholar 

  28. Rapaport, D.C.: The event scheduling problem in molecular dynamic simulation. J. Comput. Phys. 34, 184 (1980)

    Article  ADS  Google Scholar 

  29. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Landauer, R.: Dissipation and noise immunity in computation and communication. Nature 335, 779 (1988)

    Article  ADS  Google Scholar 

  31. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 (2012)

    Article  ADS  Google Scholar 

  32. Trabesinger, A.: Complexity. Nat. Phys. 8, 13 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

S. Di Sabatino is now with LPT-IRSAMC, Université Paul Sabatier—Toulouse, France. The research leading to these results was supported by funding from the Italian Ministry of Research (MIUR) through the “Futuro in Ricerca” FIRB grant PHOCOS-RBFR08E7VA. Partial funding was received through the SMARTCONFOCAL project of the Regione Lazio and through the PRIN project no. 2009P3K72Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. DelRe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Porto, P., Di Sabatino, S., Crosignani, B. et al. Power-Law Relaxation and Cumulative Information. J Stat Phys 153, 479–485 (2013). https://doi.org/10.1007/s10955-013-0840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0840-7

Keywords

Navigation