, Volume 152, Issue 1, pp 93-111

Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We study the time evolution of the ASEP on a one-dimensional torus with L sites, conditioned on an atypically low current up to a finite time t. For a certain one-parameter family of initial measures with a shock we prove that the shock position performs a biased random walk on the torus and that the measure seen from the shock position remains invariant. We compute explicitly the transition rates of the random walk. For the large scale behavior this result suggests that there is an atypically low current such that the optimal density profile that realizes this current is a hyperbolic tangent with a traveling shock discontinuity. For an atypically low local current across a single bond of the torus we prove that a product measure with a shock at an arbitrary position and an antishock at the conditioned bond remains a convex combination of such measures at all times which implies that the antishock remains microscopically stable under the locally conditioned dynamics. We compute the coefficients of the convex combinations.