Skip to main content
Log in

Two Refreshing Views of Fluctuation Theorems Through Kinematics Elements and Exponential Martingale

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, G.S.: Fluctuation-dissipation theorems for systems in non-thermal equilibrium and applications. Z. Phys. 252, 25–38 (1972)

    Article  ADS  Google Scholar 

  2. Applebaum, D.: Levy Process Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103, 010602 (2009)

    Article  ADS  Google Scholar 

  4. Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for Markov dynamics, I: jump processes and overdamped diffusions. J. Stat. Phys. 137, 1094–1116 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bass, R.: SDEs with jumps. Notes for Cornell Summer School. http://www.math.uconn.edu/bass/cornell.pdf (2007)

  6. Baule, A., Cohen, E.G.D.: Fluctuation properties of an effective nonlinear system subject to Poisson noise. Phys. Rev. E 79, 030103 (2009)

    ADS  Google Scholar 

  7. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, San Diego (1968)

    MATH  Google Scholar 

  8. Brissaud, A., Frisch, U.: Linear stochastic differential equation. J. Math. Phys. 15, 5 (1974)

    Article  MathSciNet  Google Scholar 

  9. Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. P08001 (2006)

  11. Chetrite, R., Gawedzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Chetrite, R., Falkovich, G., Gawedzki, K.: Fluctuation relations in simple examples of nonequilibrium steady states. J. Stat. Mech. P08005 (2008)

  13. Chetrite, R., Gawedzki, K.: Eulerian and Lagrangian pictures of nonequilibrium diffusions. J. Stat. Phys. 137, 5–6 (2009)

    Article  MathSciNet  Google Scholar 

  14. Chetrite, R.: Fluctuation relations for diffusion that is thermally driven by a nonstationary bath. Phys. Rev E. 051107 (2009)

  15. Chetrite, R.: Thesis of ENS-Lyon (2008). Manuscript available at http://perso.ens-lyon.fr/raphael.chetrite/

  16. Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall, London (2003)

    Book  Google Scholar 

  18. Crisanti, A., Ritort, J.: Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence. J. Phys. A, Math. Gen. 36, R181–R290 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Crooks, G.E.: Path ensembles averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)

    ADS  Google Scholar 

  20. Cugliandolo, L.F., Kurchan, J., Parisi, G.: Off equilibrium dynamics and aging in unfrustrated systems. J. Phys. 4, 1641–1656 (1994)

    Google Scholar 

  21. Czernik, T., Kula, J., Luczka, J., Hanggi, P.: Thermal ratchets driven by Poissonian white shot noise. Phys. Rev. E 55, 4057–4066 (1997)

    Article  ADS  Google Scholar 

  22. Darses, S., Nourdin, I.: Dynamical properties and characterization of gradient drift diffusion. Electron. Commun. Probab. 12, 390–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Davis, M.H.A.: Piecewise-deterministic Markov process: a general class of non-diffusion stochastic models. J. R. Stat. Soc. B 46, 353–388 (1984)

    MATH  Google Scholar 

  24. Dellacherie, C., Meyer, P.A.: Probabilités et potential. Chapitre V à VIII. In: Actualités Scientifiques et Industrielles, vol. 1385. Hermann, Paris (1980)

    Google Scholar 

  25. Dembo, A., Deuschel, J.D.: Markovian perturbation, response and fluctuation dissipation theorem. Ann. Inst. Henri Poincaré 46, 822–852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Diaconis, P., Miclo, L.: On characterizations of Metropolis type algorithms in continuous time. ALEA Lat. Am. J. Probab. Math. Stat. 6, 199–238 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Diezemann, G.: Fluctuation-dissipation relations for Markov processes. Phys. Rev. E 72, 011104 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, New York (1984)

    Book  MATH  Google Scholar 

  29. Durrett, R.: Probability, Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  30. Dynkin, E.B.: The initial and final behavior of trajectories of Markov processes. Russ. Math. Surv. 26, 165 (1971)

    Article  MATH  Google Scholar 

  31. Dynkin, E.B.: On duality for Markov processes. In: Friddman, A., Pinsky, M. (eds.) Stochastic Analysis. Academic Press, San Diego (1978)

    Google Scholar 

  32. Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994)

    Article  ADS  Google Scholar 

  33. Feller, W.: On the integro-differential equations of purely discontinuous Markov processes. Trans. Am. Math. Soc. 48, 488–515 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  34. Follmer, H.: An entropy approach to the time reversal of diffusion process. In: Stochastic Differential Equation. Lecture Notes in Control and Information Sci., vol. 69, pp. 156–163. Springer, Berlin (1985)

    Google Scholar 

  35. Gallavotti, G., Cohen, E.G.D.: Dynamical ensemble in a stationary state. J. Stat. Phys. 80, 931–970 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Gallavotti, G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Ge, H., Jiang, D.Q.: Generalized Jarzynski’s equality of inhomogeneous multidimensional diffusion processes. J. Stat. Phys. 131, 675–689 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Gomez-Solano, J.R., Petrosyan, A., Ciliberto, S., Chetrite, R., Gawedzki, K.: Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a nonequilibrium steady state. Phys. Rev. Lett. 103, 040601 (2009)

    Article  ADS  Google Scholar 

  39. Gomez-Solano, J.R., Petrosyan, A., Ciliberto, S., Maes, C.: Non-equilibrium linear response of micron-sized systems. arXiv:1006.3196v1 (2010)

  40. Hanggi, P.: Langevin description of Markovian integro-differential master equations. Z. Phys. B, Condens. Matter Quanta 36, 271–282 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  41. Hanggi, P., Thomas, H.: Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 207–319 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  42. Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech. P07020 (2007)

  43. Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001)

    Article  ADS  Google Scholar 

  44. Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ito, K., Watanabe, S.: Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier 15, 13–30 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jacob, N.: Pseudo-differential Operators and Markov Processes, vol. I. Imperial College Press, London (2001)

    Book  MATH  Google Scholar 

  47. Jacob, N.: Pseudo-differential Operators and Markov Processes, vol. II. Imperial College Press, London (2002)

    Book  MATH  Google Scholar 

  48. Jacob, N.: Pseudo-differential Operators and Markov Processes, vol. III. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  49. Jarzynski, C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    Article  ADS  Google Scholar 

  50. Jarzynski, C.: Equilibrium free energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56, 5018 (1997)

    ADS  Google Scholar 

  51. Jiang, D.Q., Qian, M., Qian, M.P.: Mathematical theory of nonequilibrium steady states: on the frontier of probability and dynamical systems. In: Lecture Notes in Mathematics, vol. 1833. Springer, Berlin (2004)

    Google Scholar 

  52. Joachain, C.: Quantum Collision Theory. North-Holland, Amsterdam (1975)

    Google Scholar 

  53. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  ADS  Google Scholar 

  54. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Non-equilibrium Statistical Mechanics. Springer, Berlin (1991)

    Google Scholar 

  55. Klimontovich, Yu.K.: Ito, Statonovich and kinetic forms of stochastic equations. Physics A 163, 515–532 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  56. Kunita, H.: Absolute continuity of Markov process and generators. Nagoya Math. J. 36, 1–26 (1969)

    MathSciNet  MATH  Google Scholar 

  57. Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A, Math. Gen. 31, 3719–3729 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Kurchan, J.: Non-equilibrium work relations. J. Stat. Mech.: Theory Exp., P07005 (2007)

  59. Lebowitz, J., Spohn, H.: A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Lippiello, E., Corberi, F., Zannetti, M.: Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Phys. Rev. E 71, 036104 (2005)

    MathSciNet  ADS  Google Scholar 

  61. Lippiello, E., Corberi, F., Sarracinno, A., Zannetti, M.: Non-linear response and fluctuation dissipation relations. Phys. Rev. E 78, 041120 (2008)

    ADS  Google Scholar 

  62. Liu, F., Ou-Yang, Z.C.: Generalized integral fluctuation theorem for diffusion processes. Phys. Rev. E 79, 060107 (2009)

    ADS  Google Scholar 

  63. Liu, F., Luo, Y.P., Huang, M.C., Ou-Yang, Z.C.: A generalized integral fluctuation theorem for general jump processes. J. Phys. A, Math. Theor. 42, 332003 (2009)

    Article  MathSciNet  Google Scholar 

  64. Liu, F., Ou-Yang, Z.C.: Linear response theory and transient fluctuation-theorems for diffusion processes: a backward point of view. arXiv:0912.1917v1 (2009)

  65. Luczka, J., Czernik, T., Hanggi, P.: Symmetric white noise can induce directed current in ratchets. Phys. Rev. E 56, 3968–3975 (1997)

    ADS  Google Scholar 

  66. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. Maes, C., Wynants, B.: On a response formula and its interpretation. Markov Process. Relat. Fields 16, 45–58 (2010)

    MathSciNet  MATH  Google Scholar 

  68. Marini Bettolo Marconi, U., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008)

    Article  ADS  Google Scholar 

  69. Mayer, P., Leonard, S., Berthier, L., Garrahan, J.P., Sollich, P.: Activated aging dynamics and negative fluctuation-dissipation ratios. Phys. Rev. Lett. 96, 030602 (2006)

    Article  ADS  Google Scholar 

  70. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  71. Nelson, E.: Dynamical Theories of Brownian Motion, 2nd edn. Princeton University Press, Princeton (2001)

    Google Scholar 

  72. Nelson, E.: Quantum Fluctuations, Princeton Series in Physics. Princeton University Press, Princeton (1985)

    Google Scholar 

  73. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  MATH  Google Scholar 

  74. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  ADS  MATH  Google Scholar 

  75. Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  76. Palmowski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8(6), 767–785 (2002)

    MathSciNet  MATH  Google Scholar 

  77. Porporato, A., D’Odorico, P.: Phase transitions driven by state-dependent Poisson noise. Phys. Rev. Lett. 92, 110601 (2004)

    Article  ADS  Google Scholar 

  78. Prost, J., Joanny, J.F., Parrondo, J.M.R.: Generalized fluctuation-dissipation theorem for steady state systems. Phys. Rev. Lett. 103, 090601 (2009)

    Article  ADS  Google Scholar 

  79. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  80. Risken, H.: The Fokker Planck Equation, 2nd edn. Springer, Berlin-Heidelberg (1989)

    Book  MATH  Google Scholar 

  81. Sancho, J.M., San Miguel, M., Pesquera, L., Rodriguez, M.A.: Positivity requirements on fluctuating parameters. Physica A 142, 532–547 (1987)

    Article  ADS  Google Scholar 

  82. Seifert, U.: Stochastic thermodynamics: Principles and perspectives. Eur. Phys. J. B 64, 423–432 (2008)

    Article  ADS  MATH  Google Scholar 

  83. Seifert, U., Speck, T.: Fluctuation-dissipation theorem in nonequilibrium steady states. Europhys. Lett. 89, 10007 (2010)

    Article  ADS  Google Scholar 

  84. Sekimoto, K.: Stochastic energetics. In: Lecture Notes in Physics, vol. 799. Springer, Berlin (2010)

    Google Scholar 

  85. Speck, T., Seifert, U.: Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state. Europhys. Lett. 74, 391–396 (2006)

    Article  ADS  Google Scholar 

  86. Speck, T.: Driven soft matter: entropy production and the fluctuation-dissipation theorem. arXiv:1004.1621 (2010)

  87. Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

  88. Stroock, D.: Diffusion processes associated with Lévy generators. Probab. Theory Relat. Fields 32, 209–244 (1975)

    MathSciNet  MATH  Google Scholar 

  89. Touchette, H., Cohen, E.G.D.: Fluctuation relation for a Levy particle. Phys. Rev. E 76, 020101 (2007)

    Article  ADS  Google Scholar 

  90. Van Kampen, N.G.: Processes with delta-correlated cumulants. Physica A 102, 489–495 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  91. Zimmer, M.F.: Fluctuations in nonequilibrium systems and broken supersymmetry. J. Stat. Phys. 73, 751–764 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamik Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetrite, R., Gupta, S. Two Refreshing Views of Fluctuation Theorems Through Kinematics Elements and Exponential Martingale. J Stat Phys 143, 543–584 (2011). https://doi.org/10.1007/s10955-011-0184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0184-0

Keywords

Navigation