Skip to main content
Log in

Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Harish-Chandra correlation functions, i.e. integrals over compact groups of invariant monomials \(\prod \operatorname{tr}(X^{p_{1}}\varOmega Y^{q_{1}}\varOmega^{\dagger}X^{p_{2}}\cdots)\) with the weight exp tr (X Ω Y Ω ) are computed for the orthogonal and symplectic groups. We proceed in two steps. First, the integral over the compact group is recast into a Gaussian integral over strictly upper triangular complex matrices (with some additional symmetries), supplemented by a summation over the Weyl group. This result follows from the study of loop equations in an associated two-matrix integral and may be viewed as the adequate version of Duistermaat–Heckman’s theorem for our correlation function integrals. Secondly, the Gaussian integration over triangular matrices is carried out and leads to compact determinantal expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  ADS  Google Scholar 

  2. Eynard, B.: Random matrices. http://www-spht.cea.fr/articles_k2/t01/014/publi.pdf (2000)

  3. Guhr, T., Mueller-Groeling, A., Weidenmueller, H.A.: Phys. Rep. 299, 189–425 (1998), cond-mat/9707301

    Article  ADS  MathSciNet  Google Scholar 

  4. Forrester, P.J., Snaith, N.C., Verbaarschot, J.J.M.: J. Phys. A 36, R1–R10 [Special issue: Random Matrix Theory], cond-mat/0303207

  5. Harish-Chandra: Am. J. Math. 79, 87–120 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  6. Itzykson, C., Zuber, J.-B.: J. Math. Phys. 21, 411–421 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zinn-Justin, P., Zuber, J.-B.: J. Phys. A 36, 3173–3193 (2003) [Special issue: Forrester, P.J., Snaith, N.C., Verbaarschot, J.J.M. (eds.), Random Matrix Theory], math-ph/0209019

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Kogan, I.I., Morozov, A., Semenoff, G.W., Weiss, N.: Nucl. Phys. B 395, 547–580 (1993), hep-th/9208012

    Article  ADS  MathSciNet  Google Scholar 

  9. Morozov, A.: Mod. Phys. Lett. A 7, 3503–3508 (1992), hep-th/9209074

    Article  MATH  ADS  Google Scholar 

  10. Shatashvili, S.: Commun. Math. Phys. 154, 421–432 (1993), hep-th/9209083

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Eynard, B.: A short note about Morozov’s formula. math-ph/0406063

  12. Eynard, B., Prats Ferrer, A.: Commun. Math. Phys. 264, 115–144 (2005), hep-th/0502041; Erratum to be published

    Article  ADS  Google Scholar 

  13. Duistermaat, J.J., Heckman, G.J.: Invent. Math. 69, 259–268 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Duistermaat, J.J., Heckman, G.J.: Invent. Math. 72, 153–158 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Szabo, R.J.: Equivariant localization of path integrals. hep-th/9608068

  16. Karshon, Y.: Lecture notes on group actions on manifolds. http://www.ma.huji.ac.il/~karshon/teaching/1996-97/actions/lecture-notes.html (1996–1997)

  17. Stone, M.: Nucl. Phys. B 314, 557–586 (1989)

    Article  ADS  Google Scholar 

  18. Bump, D.: Lie Groups. Graduate Texts in Mathematics, vol. 225. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Mehta, M.L.: Random Matrices. Academic Press, New York (1991)

    MATH  Google Scholar 

  20. Ginibre, J.: J. Math. Phys. 6, 440–449 (1965)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Knapp, A.W.: Representation Theory of Semi-simple Groups. Princeton University Press, Princeton (1986)

    Google Scholar 

  22. Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, Berlin (1991)

    MATH  Google Scholar 

  23. Efetov, K.B.: Supersymmetry in Disorder and Chaos. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  24. Di Francesco, P., Zinn-Justin, P.: From orbital varieties to alternating sign matrices. math-ph/0512047, to appear in the proceedings of FPSAC’06

  25. Fyodorov, Y.V., Khoruzhenko, B.A.: On absolute moments of characteristic polynomials of a certain class of complex random matrices. math-ph/0602032

  26. Fyodorov, Y.V.: On permanental polynomials of certain random matrices. math-ph/0602039

  27. Brézin, É., Hikami, S.: An extension of the Harish-Chandra–Itzykson–Zuber integral. math-ph/0208002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prats Ferrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prats Ferrer, A., Eynard, B., Di Francesco, P. et al. Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups. J Stat Phys 129, 885–935 (2007). https://doi.org/10.1007/s10955-007-9350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9350-9

Keywords

Navigation