1.

S. Huang and D. Ingber, The structural and mechanical complexity of cell-growth control. *Nature Cell Biol.*
**1**:E131 (1999).

2.

I. Salazar-Ciudad, J. Jernvall, and S. A. Newman, Mechanisms of pattern formation in development and evolution. *Development*
**130**:2027 (2003).

3.

D. J. Tschumperlin, EGFR autocrine signaling in a compliant interstitial space: Mechanotransduction from the outside in. *Cell Cycle*
**3**:996 (2004).

4.

A. Neagu, K. Jakab, R. Jamison, and G. Forgacs, Role of physical mechanisms in biological self-organization.

*Phys. Rev. Lett.*
**95**:178104 (2005).

ADS5.

G. Forgacs and S. Newmann, *Biological Physics of the Developing Embryo* (Cambridge University Press, Cambridge, 2005).

6.

G. Helmlinger, P. Netti, H. Lichtenfeld, R. Melder, and R. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. *Nature Biotechnol.*
**15**:778 (1997).

7.

C. Nelson, R. Jean, J. Tan, W. Liu, N. Sniadecki, A. Spector, and C. Chen, Mechanical control of tissue growth: Function follows form. *Proc. Natl. Acad. Sci. (USA)*, **102**:(2005).

8.

D. Ingber, Mechanical control of tissue morphogenesis during embryological development. *Int. J. Dev. Biol.*
**50**:255 (2006).

9.

D. Ingber, Mechanical control of tissue growth: Function follows form.

*Proc. Natl. Acad. Sci. (USA)*
**102**:11571 (2005).

ADS10.

L. D. Horb and J. M. Slack, Role of cell division in branching morphogenesis and differentiation of the embryonic pancreas. *Int. J. Dev. Biol.*
**44**:791 (2000).

11.

B. Shraiman, Mechanical feedback as a possible regulator of tissue growth.

*Proc. Natl. Acad Sci. (USA)*
**102**:3318 (2005).

ADS12.

H. Lodish, A. Berk, P. Matsudaria, C. Kaiser, M. Krieger, M. Scott, S. Zipursky, and J. Darnell, *Molecular Cell Biology* (Freeman, New York, 2004).

13.

H. Byrne, J. King, D. McElwain, and L. Preziosi, A two-phase model of solid tumor growth, *Appl. Math. Lett.*, pp. 1–15 (2001).

14.

C. Chen, H. Byrne and J. King, The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids,

*J. Math. Biol.*
**43**:191 (2001).

MATHMathSciNet15.

U. Schwarz, N. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. Safran, Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization,

*Biophys. J.*
**83**:1380 (2002).

ADS16.

H. Byrne and L. Prezziosi, Modelling solid tumour growth using the theory of mixtures,

*Math. Med. Biol.*
**20**:341 (2003).

MATH17.

I. Bischofs and U. Schwarz, Effect of poisson ratio on cellular structure formation.

*Phys. Rev. Lett.*
**95**:068102 (2005).

ADS18.

I. Schiffer, S. Gebhard, C. Heimerdinger, A. Heling, J. Hast, U. Wollscheid, B. Seliger, B. Tanner, S. Gilbert, T. Beckers, S. Baasner, W. Brenner, C. Spangenberg, D. Prawitt, T. Trost, W. Schreiber, B. Zabel, M. Thelen, H. Lehr, F. Oesch, and J. Hengstler, Switching off her-2/ neu in a tetracyline-controlled mouse tumor model leads to apoptosis and tumorsize-dependent remission. *Cancer Res.*
**63**:7221 (2003).

19.

M. Alison and C. Sarraf, *Understanding Cancer* (Cambridge University Press, Cambridge, 1998).

20.

B. Sayan, G. Ince, A. Sayan, and M. Ozturk, Napo as a novel apoptosis marker. *J. Cell Biol.*
**155**:719 (2001).

21.

J. Mombach and J. Glazier, Single cell motion in aggregates of embryonic cells.

*Phys. Rev. Lett.*
**76**:3032 (1996).

ADS22.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. Moon, C. Cunningham and J. Käs, The optical stretcher: A novel laser tool to micromanipulate cells. *Biophys. J.*
**81**:767 (2001).

23.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, Microrheology of human lung epithelial cells measured by atomic force microscopy. *Biophys. J.*
**84**:2071 (2003).

24.

C. Laforsch, W. Ngwa, W. Grill, and R. Tollrian, An acoustic microscopy technique reveals hidden morphological defenses in daphnia.

*Proc. Natl. Acad. Sci. (USA)*
**101**:15911 (2005).

ADS25.

S. Chesla, P. Selvaraj and C. Zhu, Measuring two-dimensional receptor-ligand binding kinetics by micropipette. *Biophys. J.*
**75**:1553 (1998).

26.

X. Zhang, A. Chen, D. Leon, H. Li. E. Noiri, V. Moy, and M. Goligorsky, Atomic force microscopy measurement of leukocyte-endothelial interaction. *Am. J. Physiol. Heart Circ. Physiol.*
**286**:H359 (2004).

27.

J. Galle, G. Aust, G. Schaller, T. Beyer, and D. Drasdo, Single-cell based mathematical models to the spatio-temporal pattern formation in multi-cellular systems, Cytometry A, in press (2006).

28.

U. Braumann, J. Kuska, J. Einenkel, L. Horn, M. Loeffler, and M. Hoeckel, Three-dimensional reconstruction and quantification of cervical carcinoma invasion fronts from histological serial sections. *IEEE Trans. Med. Imaging*
**24**:1286 (2005).

29.

D. Helbing, Traffic and related self-driven many particle systems.

*Rev. Mod. Phys.*
**73**:1067 (2001).

ADS30.

D. Drasdo, R. Kree and J. McCaskill, Monte-carlo approach to tissue-cell populations.

*Phys. Rev. E*
**52**:6635 (1995).

ADS31.

J. Moreira and A. Deutsch, Cellular automata models of tumour development—a critical review.

*Adv. Complex Syst.*
**5**: 247 (2002).

MATHMathSciNet32.

M. S. Alber, M. A. Kiskowski, J. A. Glazier, and Y. Jiang, On cellular automaton approaches to modeling biological cells. In *Mathematical Systems Theory in Biology, Communication, and Finance*, J. Rosenthal and D. S. Gilliam (eds.) (IMA 142, Springer-Verlag, New York, 2002), pp. 1–40.

33.

D. Drasdo, On selected individual-based approaches to the dynamics of multicellular systems. In *Multiscale modeling*, J. L. W. Alt and M. Griebel (eds.) (Birkhäuser, 2003).

34.

T. Cickovski, C. Huang, R. Chaturvedi, T. Glimm, H. Hentschel, M. Alber, J. A. Glazier, S. A. Newman, and J. A. Izaguirre, A framework for three-dimensional simulation of morphogenesis. *IEEE/ACM Trans. Comput. Biol. Bioinformatics*
**2**:273 (2005).

35.

R. Merks and J. Glazier, A cell-centered approach to developmental biology.

*Physica A*
**352**:113 (2005).

ADS36.

A. Bru, J. Pastor, I. Fernaud, I. Bru, S. Melle, and C. Berenguer, Super-rough dynamics of tumor growth.

*Phys. Rev. Lett.*
**81**:4008 (1998).

ADS37.

D. Balkovetz, Evidence that hepatocyte growth factor abbrogates contact inhibition of mitosis in madin-darby canine kidney cell monolayers. *Life Sci.*
**64**:1393 (1999).

38.

L. Kunz-Schughart, Multicellular tumor spheroids: Intermediates between monolayer culture and in-vivo tumor. *Cell Biol. Int.*
**23**:157 (1999).

39.

M. Locke, M. Heywood, S. Fawell, and I. Mackenzie, Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. *Cancer Res.*
**65**:8944 (2005).

40.

W. Mueller-Klieser, A review on cellular aggregates in cancer research. *Cancer Res. Clin. Oncol.*
**113**:101 (1987).

41.

R. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model.

*Science*
**240**:177 (1988).

ADS42.

M. Santini and G. Rainaldi, Three-dimensional spheroid model in tumor biology. *Pathobiology*
**67**:148 (1999).

43.

S. Gilbert, *Develoment* (Sinauer Associates Inc., New York, 1997).

44.

L. Wolpert, *Principles of Development* (Oxford Univ. Press, Oxford, 1998).

45.

C. Booth and C. Potten, Gut instincts, thoughts on intestinal epithelial stem cells. *Clin. Invest.*
**105**:1493 (2000).

46.

C. Potten and M. Loeffier, Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. *Development*
**110**:1001 (1990).

47.

D. Drasdo and M. Löffler, Individual-based models on growth and folding in one-layered tissues: Intestinal crypts and blastulation.

*Nonl. Anal.*
**47**:245 (2001).

MATH48.

C. Farrell, K. Rex, S. Kaufman, C. Dipalma, J. Chen, S. Scully and D. Layey, Effects of keratinocyte growth factor in the squamous epithelium of the upper aero-digestive tract of normal and irradiated mice. *Int. J. Radiat. Biol.*
**75**:609 (1999).

49.

C. Klein, T. Blankenstein, O. Schmidt-Kittler, M. Petronio, B. Polzer, N. Stoecklein, and G. Riethmuller, Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. *Lancet*
**360**:683 (2002).

50.

H. Eagle, Nutriention needs of mammalian cells in tissue culture. *Science*
**122**:43 (1955).

51.

R. Ham, Clonal growth of mammalian cells in a chemically defined, synthetic medium.

*Proc. Natl. Acad. Sci.*
**53**:288 (1965).

ADS52.

I. Hayashi and G. Sato, Replacement of serum by hormones permits growth of cells in defined medium.

*Nature*
**239**:132 (1976).

ADS53.

G. Sato, A. Pardee and D. Sirbasku, *Growth of Cells in Hormonally Defined Media* (Cold Spring Harbour Laboratory, 1982).

54.

K. Burrige, Substrate adhesions in normal and transformed fibroblasts: Organization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts. *Cancer Review*
**4**:18 (1986).

55.

A. Bru, S. Albertos, J. Subiza, J. Garcia-Arsenio, and I. Bru, The universal dynamics of tumor growth.

*Biophys. J.*
**85**: 2948 (2003).

ADS56.

L. Davidson, M. Koehl, R. Keller, and G. Oster, How do sea urchins invaginate? using bio-mechanics to distinguish between mechanisms of primary invagination. *Development*
**121**:2005 (1995).

57.

M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. *European Biophys. J.*
**28**:312 (1999).

58.

J. Piper, R. Swerlick and C. Zhu, Determining force dependence of two-dimensional receptorligand binding affinity by centrifugation. *Biophys. J.*
**74**:492 (1998).

59.

D. Beysens, G. Forgacs, and J. Glazier, Cell sorting is analogous to phase ordering in fluids.

*Proc. Natl. Acad. Sci. USA*
**97**:9467 (2000).

ADS60.

M. Schienbein, K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines.

*Phys. Rev. E*
**49**:5462 (1994).

ADS61.

R. A. Gatenby and P. K. Maini, Mathematical oncology: Cancer summed up.

*Nature*
**421**:321 (2003).

ADS62.

J. Fidorra, T. Mielke, J. Booz, and L. Feinendegen, Cellular and nuclear volume of human cells during cell cycle. *Radiat. Environ. Biophys.*
**19**:205 (1981).

63.

D. Landau, *Theory of elasticity* (Pergamon, 1975).

64.

R. Carpick, D. F. Ogletree, and M. Salmeron, A gerneral equation for fitting contact area and friction vs. load measurements. *J. Colloid Interface Sci.*
**211**:395 (1999).

65.

Y.-S. C. *et al.*:Johnson-kendall-roberts theory applied to living cells. *Phys. Rev. Lett.*
**280**:312 (1999).

66.

D. Drasdo and S. Hoehme, A single-cell based model to tumor growth in-vitro: Monolayers and spheroids.

*Phys. Biol.*
**2**:133 (2005).

ADS67.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines.

*J. Chem. Phys.*
**21**:1087 (1953).

ADS68.

D. Drasdo and G. Forgacs, Modelling the interplay of generic and genetic mechanisms in cleavage, blastulation and gastrulation. *Dev. Dyn.*
**219**:182 (2000).

69.

D. Drasdo and S. Höhme, Individual-based approaches to birth and death in avascular tumors.

*Math. and Comp. Modelling*
**37**:1163 (2003).

MATH70.

M. Allen and D. Tildersley,

*Computer Simulation of Liquids* (Oxford Science Publ., Oxford, 1987).

MATH71.

D. Landau and K. Binder, *A Guide to Monte Carlo Simulations in Statistical Physics* (Cambridge University Press, 2000).

72.

M. Eden, A two-dimensional growth process. In *Proceedings of the 4th. Berkeley Symposium on Mathematics and Probability*, vol. IV, J. Neyman (ed.) (University of California Press, 1961), pp. 223–239.

73.

R. Weinberg, *The biology of cancer* (Garland Science, New York and Oxford, 2007).

74.

J. Xin, Front propagation in heterogeneous media.

*SIAM Rev.*
**42**:161 (2000).

MathSciNet75.

K. Swanson, E. Alvord, and J. Murray, quantitativ model for differential motility of gliomas in gey and white matter. *Cell Prolif.*
**33**:317 (2000).

76.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, *The cell* (Garland Science Publ., New York, 2002).

77.

J. Galle, M. Loeffler, and D. Drasdo, Modelling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in-vitro. *Biophys. J.*
**88**: 62 (2005).

78.

G. Schaller and M. Meyer-Hermann, Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model.

*Phys. Rev. E.*
**71**:051910 (2005).

ADSMathSciNet79.

J. Piper, R. Swerlick, and C. Zhu, Determining force dependence of two-dimensional receptorligand binding affinity by centrifugation.

*Biophys. J.*
**74**:492 (1998).

CrossRef80.

J. Dhont, *An introduction to dynamics of colloids* (Elsevier, Amsterdam, 1996).

81.

L. Li, J. Backer, A. Wong, E. Schwanke, B. Stewart, and M. Pasdar, Bcl-2 expression decreases cadherin-mediated cell-cell adhesion. *J. Cell Sci.*
**116**:3687 (2003).

82.

M. Warchol, Cell density and n-cadherin interaction regulates cell proliferation in the sensory epithelia of the inner ear. *J. Neurosci.*
**22**:2607 (2002).

83.

P. Klekotka, S. Santoro, A. Ho, S. Dowdy, and M. Zutter, Mammary epithelial cell-cycle progression via the αβ-integrin. *Am. J. Path.*
**159**:983 (2001).

84.

L. Junqueira and J. Carneiro, *Basic histology* (McGraw Hill, 2005).

85.

D. Stupack and D. Cheresh, Get a ligand, get a life: Integrins, signaling and cell survival. *J. Cell Sci.*
**115**:3729 (2002).

86.

K. Orford. C. Orford, and S. W. Byers, Exogenous expression of β-catenin regulates contact inhibition, anchorage-independent growth, anoikis and radiation-induced cell cycle arrest. *J. Cell Biol.*
**146**:855 (1999).

87.

Z. Yan, M. Chen, M. Perucho, and E. Friedman, Oncogenic ki-ras but not oncogenic ha-ras blocks integrin? 1-chain maturation in colon epithelial cells. *J. Biol. Chem.*
**272**:2607 (1997).

88.

P. Lu, Q. Lu, A. Rughetti, and J. Taylor-Papadimitriou, bcl-2 overexpression inhibits cell death and promotes the morphogenesis, but not tumorigenesis of human mammary epithelial cells. *J. Cell Biol.*
**129**:1363 (1995).

89.

R. Bates, N. Edwards, and J. Yates, Spheroids and cell survival. *Crit. Rev. Oncol./Hematol.*
**36**:61 (2000).

90.

M. Santini, G. Rainaldi, and P. Indovina, Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. *Crit. Rev. Oncology/Hematology*
**36**:75 (2000).

91.

C. Chen, M. Mrksich, S. Huang, G. Whitesides, and D. Ingber, Geometric control of cell life and death. *Science*
**276**: 1425 (1997).

92.

N. Gloushankova, N. Alieva, M. Krendel, E. Bonder, H. Feder, J. Vasiliev, and I. Gelfand, Cell-cell contact changes the dynamics of lamellar activity in nontransformed epitheliocytes but not in their ras-transformed descendants.

*Proc. Natl. Acad. Sci. USA*
**94**:879 (1997).

ADS93.

A. Barabasi and H. Stanley,

*Fractal concepts in surface growth* (Cambridge University Press, Cambridge, 1995).

MATH94.

E. Moro, Internal fluctuations effects on fisher waves.

*Phys. Rev. Lett.*
**87**:238303 (2001).

ADS95.

T. Halpin-Healy and Y. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that.

*Phys. Rep.*
**254**:215 (1995).

ADS96.

M. Block, E. Schoell, and D. Drasdo, Classifying the expansion kinetics and critical surface dynamics of growing cell populations, *Cond. mat. physics*/0610146 (2006).

97.

D. Drasdo, Coarse graining in simulated cell populations.

*Adv. Complex Syst.*
**8**:319 (2005).

MATHMathSciNet98.

J. Ramasco, J. Lopez, and M. Rodriguez, Generic dynamic scaling in kinetic roughening.

*Phys. Rev. Lett.*
**84**:2199 (2000).

ADS99.

F. Family and T. Vicsek, Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model.

*J. Phys. A: Math. Gen.*
**18**:L75 (1985).

ADS100.

J. Buceta and J. Galeano, Comments on the article—the universal dynamics of tumor growth. *Biophys. J.*
**88**:3734 (2005).

101.

A. Wong and B. Gumbiner, Adhesion-independent mechanism for suppression of tumor cell invasion by e-cadherin. *J. Cell Biol.*
**161**:1191 (2003).

102.

P. Friedl, Prespecification and plasticity: Shifting mechanisms of cell migration. *Curr. Opin. Cell. Biol.*
**16**:14 (2004).

103.

J. Freyer and R. Sutherland, A reduction in the in situ rates of oxygen and glucose consumption of cells in emt6/ro spheroids during growthregulation of growth. *J. Cell. Physiol.*
**124**:516 (1985).

104.

J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in emt6/ro multicellular spheroids by the glucose and oxygene supply. *Cancer Res.*
**46**:3504 (1986).

105.

J. Casciari, S. Sotirchos, and R. Sutherland, Glucose diffusivity in multicellular tumor spheroids. *Cancer Res.*
**48**:3905 (1988).

106.

J. Casciari, S. Sotirchos, and R. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration and extracellular ph. *J. Cell. Physiol.*
**151**:386 (1992).

107.

Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, and J. Freyer, A multiscale model for avascular tumor growth. *Biophys. J.*
**89**:3884 (2005).

108.

E. Stott, N. Britton, J. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumor growth using the potts model. *Math. Comput. Modelling*
**30**:183 (1999).

109.

S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. *Silico Biol.*
**2**:0035 (2002).

110.

J. Folkman and M. Hochberg, Self-regulation of growth in three dimensions. *J. Exp. Med.*
**138**:745 (1973).

111.

J. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells.

*Phys. Rev. E*
**47**:2128 (1993).

ADS112.

T. Newman, Modeling multi-cellular systems using sub-cellular elements.

*Math. Biosciences Eng.*
**2**:613 (2005).

MATH113.

N. Wright and M. Alison, *The Biology of Epithelial Cell Population* (Clarendon Press, Oxford, 1984).

114.

D. Drasdo, Buckling instabilities in one-layered growing tissues.

*Phys. Rev. Lett.*
**84**:4244 (2000).

ADS115.

S. Hörstadius, The mechanics of sea urchin development, studied by operative methods. *Biol. Rev.*
**14**:132 (1939).

116.

K. Dan, Cytoembryology of echinoderms and amphibia.

*Int. Rev. Cytol*
**9**:321 (1960).

CrossRef117.

L. Wolpert and E. Mercer, An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity. *Exp. Cell Res.*
**30**:280 (1963).

118.

M. Leptin and B. Grunewald, Cell shape changes during gastrulation in drosophila. *Development*
**110**:73 (1990).

119.

J. Gere and S. Timoshenko, *Mechanics of Materials*, 4th edn. (PWS-Publishing Co., Boston, 1997).

120.

J. Dallon and H. Othmer, How cellular movement determines the collective force generated by the dictyostelium discoideum slug.

*J. theor. Biol.*
**231**:203 (2004).

MathSciNet121.

E. Palsson and H. Othmer, A model for individual and collective cell movement in dictyostelium discoideum. *Proc. Natl. Acad. Sci. USA*
**12**:10448 (2000).

122.

Z. Kam, J. Minden, D. Agard, J. Sedat, and M. Leptin, Drosophila gastrulation: Analysis of cell shape changes in living embryos by three-dimensional fluorescence mircroscopy. *Development*
**112**:365 (1991).

123.

A. Cairnie and B. Millen, Fission of crypts in the small intestine of the irradiated mouse. *Cell Tissue Kinet.*
**8**:89 (1975).

124.

K. Araki, T. Ogata, M. Kobayashi, and R. Yatani, A morphological study on the histogenesis of human colorectal hyperplastic crypts. *Gastroenterology*
**109**:1468 (1995)

125.

A. Bru, S. Albertos, J. L. Garcia-Asenjo, and I. Bru, Pinning of tumoral growth by enhancement of the immune response.

*Phys. Rev. Lett.*
**92**:238101 (2004).

ADS126.

Y. Boucher, L. Baxter, and R. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. *Cancer Res.*
**50**:4478 (1990).

127.

Y. Boucher, J. Salehi, B. Witwer, and R. Jain, Interstitial fluid pressure in intracranial tumors in patients and in rodents. *Br. J. Cancer*
**75**:829 (1997).

128.

E. Filipski, F. Delaunay, V. King, B. C. MW Wu, A. Grechez-Cassiau, C. Guettier, M. Hastings, and F. Levi, Effects of chronic jet lag on tumor progression in mice. *Cancer Res.*
**64**:7879 (2004).

129.

A. Goriely and M. B. Amar, Differential growth and instability in elastic shells.

*Phys. Rev. Lett.*
**94**:198103 (2005).

ADS130.

J. Dunphy, *Wound healing* (MedCom-Press, New York, 1978).

131.

P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation. *J. Theor. Biol.*
**203**:317 (2000).

132.

D. Drasdo and M. Kruspe, Emergence of cell migration and aggregation strategies in a simulated evolutionary process. *Adv. Complex Syst.*
**8** (2005).

133.

T. Alarcon. H. Byrne, and P. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells.

*J. Theor. Biol.*
**229**:395 (2004).

MathSciNet134.

K. Frame and W. Hu, A model for density-dependent growth of anchorage-dependent mammalian cells.

*Biotechnol. Bioengineering*
**32**:1062 (1988).

CrossRef135.

K. Hawboldt, N. Kalogerakis, and L. Behie, A cellular automaton model for micro-carrier cultures. *Biotechnol. Bioengineering*
**43**:90 (1993).

136.

L. Arakelyan, Y. Merbl, and Z. Agur, Vessel maturation effects on tumour growth: Validation of a computer model in implanted human ovarian carcinoma spheroids. *Eur. J. Cancer*
**41**:159 (2005).

137.

C. Basdevant, J. Clairambault, and F. Levi, Optimisation of time-scheduled regimen for anti-cancer drug infusion.

*Math. Modelling Numerical Anal.*
**39**:1069 (2005).

MATHMathSciNet138.

B. Ribba, K. Marron, Z. Agur, T. A. T, and P. Maini, A mathematical model of doxorubicin treatment efficacy for non-hodgkin's lymphoma: Investigation of the current protocol through theoretical modelling results.

*Bull. Math. Biol.*
**67**:79 (2005).

MathSciNet139.

B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer and its use in analyzing irradiation therapies. *Theor. Biol. Med. Model*
**3**:7 (2006).

140.

N. Grabe and K. Neuber, A multicellular systems biology model predicts epidermal morphology, kinetics and ca^{+}-flow. *Bioinformatics*
**21**:3541 (2005).

141.

S. Hoehme, J. Hengstler, M. Brulport, M. Schaefer, A. Bauer, R. Gebhardt, and D. Drasdo, Mathematical modelling of liver regeneration after intoxification with ccl_{4}, Chemico-Biological Interactions, in revision (2007).

142.

G. Michalopoulos and M. DeFrances, Liver regeneration. *Science*
**276**:60 (1997).

143.

R. Goldstein and S. Langer, Nonlinear dynamics of stiff polymers.

*Phys. Rev. Lett.*
**75**:1094 (1995).

ADS144.

M. Doi and S. F. Edwards, *The theory of polymer dynamics* (Oxford University Press, 1986).

145.

U. Seifert, Adhesion of vesicles in two dimensions.

*Phys. Rev. A*
**43**:6803 (1991).

ADSMathSciNet146.

D. Kessler, J. Koplik, and H. Levine, Pattern selection in fingered growth, phenomena.

*Adv. Phys.*
**37**:255 (1988).

ADS