Skip to main content
Log in

A Mesoscopic Simulation Approach for Modeling Intracellular Reactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Reactions in the intracellular medium occur in a highly organized and heterogenous environment rendering invalid modeling approaches based on the law of mass action or its stochastic counter-part. This has led to the recent development of a variety of stochastic microscopic approaches based on lattice-gas automata or Brownian dynamics. The main disadvantage of these methods is that they are computationally intensive. We propose a mesoscopic method which permits the efficient simulation of reactions occurring in the complex geometries typical of intracellular environments. This approach is used to model the transport of a substrate through a pore in a semi-permeable membrane, in which its Michaelis–Menten enzyme is embedded. We find that the temporal evolution of the substrate is a sensitive function of the spatial heterogeneity of the environment. The spatial organization and heterogeneities of the intracellular medium seem to be playing an important role in the regulation of biochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Altenberger and M. Tirrell J. Chem. Phys. 80: 2208 (1984).

    Article  ADS  Google Scholar 

  2. S. S. Andrews and D. Bray Phys. Biol. 1: 137 (2004).

    Article  ADS  Google Scholar 

  3. G. K. Batchelor J. Fluid Mech. 74: 1 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. C. W. J. Beenakker and P. Mazur Physica A 120: 388 (1983).

    Article  ADS  Google Scholar 

  5. P. Bernado, J. G. de la Torre and M. Pons J. Mol. Recognit. 17: 397 (2004).

    Article  Google Scholar 

  6. H. Berry Biophys. J. 83: 1891 (2002).

    Google Scholar 

  7. D. Bray Annu. Rev. Biophys. Biomol. Struct. 27: 59 (1998).

    Article  Google Scholar 

  8. F. Brochard and P.-G. DeGennes Macromolecules 10: 1157 (1977).

    Article  Google Scholar 

  9. D. F. Calef and J. M. Deutch Ann. Rev. Phys. Chem. 34: 493 (1983).

    Article  Google Scholar 

  10. N. A. Campbell Biology (The Benjamin/Cummings Publishing Company, California, 1996).

    Google Scholar 

  11. B. Cheng, R. L. Fournier, and P. A. Relue Biotechnol. Bioeng. 70: 467 (2000).

    Article  Google Scholar 

  12. R. I. Cukier Macromolecules 17: 252 (1984).

    Article  Google Scholar 

  13. P.-G. DeGennes Macromolecules 9: 594 (1976).

    Article  Google Scholar 

  14. P.-G. DeGennes Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  15. J. M. Deutch and I. Oppenheim J. Chem. Phys. 54: 3547 (1971).

    Article  ADS  Google Scholar 

  16. M. Doi and S. F. Edwards The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

    Google Scholar 

  17. S. F. Edwards J. Phys. A 8: 1670 (1975).

    Article  ADS  Google Scholar 

  18. J. L. Eide and A. K. Chakraborty J. Phys. Chem. B. 110: 2318 (2006).

    Google Scholar 

  19. D. L. Ermak and J. A. McCammon J. Chem. Phys. 69: 1352 (1978).

    Article  ADS  Google Scholar 

  20. B. U. Felderhof J. Phys A 11: 929 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. R. Fersht Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, (Freeman, New York, 1999).

    Google Scholar 

  22. U. Frisch, B. Hasslacher and Y. Pomeau Phys. Rev. Letts. 56: 1505 (1986).

    Article  ADS  Google Scholar 

  23. A. B. Fulton Cell 30: 345 (1982).

    Article  Google Scholar 

  24. C. W. Gardiner Handbook of Stochastic Methods, 2nd edition (Springer, Berlin, 1995).

    Google Scholar 

  25. N. D. Gershon, K. R. Porter and B. L. Trus Proc. Natl. Acad. Sci USA 82: 5030 (1985).

    Article  ADS  Google Scholar 

  26. D. A. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice-Boltzmann Models: An Introduction (Springer, Berlin, 2000).

    MATH  Google Scholar 

  27. A. Goldbeter Biochemical oscillations and cellular rhythms (Cambridge University Press, 1996).

  28. R. Grima and T. J. Newman Phys. Rev. E 70: 036703 (2004).

    Article  ADS  Google Scholar 

  29. R. Grima and S. Schnell Biophysical Chemistry. DOI:10.1016/j.bpc.2006.04.019.

  30. R. Grima and S. Schnell ChemPhysChem 7: 1422 (2006).

    Article  Google Scholar 

  31. D. Hall and A. P. Minton BBA-Proteins Proteomics 1649: 127 (2003).

    Article  Google Scholar 

  32. J. Hardy, Y. Pomeau and O. D. Pazzis J. Math. Phys. 14: 1746 (1973).

    Article  ADS  Google Scholar 

  33. L. Johansson and J.-E Lofroth J. Chem. Phys. 98: 7471 (1993).

    Article  ADS  Google Scholar 

  34. R. Kapral, A. Lawniczak and P. Masiar Phys. Rev. Lett. 66: 2539 (1991).

    Article  ADS  Google Scholar 

  35. R. Kapral, A. Lawniczak and P. Masiar J. Chem. Phys. 96: 2762 (1992).

    Article  ADS  Google Scholar 

  36. L. B. Kier, C.-K. Cheng and P. G. Seybold Reviews in Computational Chemistry Vol. 17 (John Wiley and Sons Inc., New York, 2001), pp. 205–254.

    Book  Google Scholar 

  37. R. Kopelman J. Stat. Phys. 42: 185 (1986).

    Article  ADS  Google Scholar 

  38. R. Kopelman Science 241: 1620 (1988).

    Article  ADS  Google Scholar 

  39. H. Kuthan Prog. Biophys. Mol. Biol. 75: 1 (2001).

    Article  Google Scholar 

  40. D. Langevin and F. Rondelez Polymer 19: 875 (1978).

    Article  Google Scholar 

  41. J. L. Lebowitz and E. Rubin Phys. Rev. 131: 2381 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  42. R. J. LeVeque Numerical Methods for Conservation Laws (Birkhauser, Basel, 1990).

    MATH  Google Scholar 

  43. K. Lipkow, S. S. Andrews and D. Bray J. Bact. 187: 45 (2005).

    Article  Google Scholar 

  44. K. Luby-Phelps Int. Rev. Cytol. 192: 189 (2000).

    Article  Google Scholar 

  45. P. Mazur and I. Oppenheim Physica 50: 241 (1970).

    Article  ADS  Google Scholar 

  46. S. C. Merriam and G. D. J. Phillies J. Poly. Sci. Part B 42: 1663 (2004).

    Article  Google Scholar 

  47. A. P. Minton Biopolymers 20: 2093 (1981).

    Article  Google Scholar 

  48. A. P. Minton J. Biol. Chem. 276: 10577 (2001).

    Article  Google Scholar 

  49. T. J. Murphy and J. L. Aguirre J. Chem. Phys. 57: 2098 (1972).

    Article  ADS  Google Scholar 

  50. T. J. Newman and R. Grima Phys. Rev. E. 70: 051916 (2004).

    Article  ADS  Google Scholar 

  51. P. A. Netz and T. Dorfmuller J. Chem. Phys. 107: 9221 (1997).

    Article  ADS  Google Scholar 

  52. B. Novak, Z. Pataki, A. Ciliberto and J. J. Tyson Chaos 11: 277 (2001).

    Article  MATH  ADS  Google Scholar 

  53. A. G. Ogston, B. N. Preston and J. D. Wells Proc. R. Soc. London, Ser. A 333: 297 (1973).

    Article  ADS  Google Scholar 

  54. J. M. Petit, B. Roux, X. X. Zhu and P. M. Macdonald Macromolecules 29: 6031 (1996).

    Article  Google Scholar 

  55. G. D. J. Phillies J. Phys. Chem. 93: 5029 (1989).

    Article  Google Scholar 

  56. G. D. J. Phillies Macromolecules 20: 558 (1987).

    Article  Google Scholar 

  57. G. D. J. Phillies Macromolecules 31: 2317 (1998).

    Article  Google Scholar 

  58. G. D. J. Phillies Macromolecules 19: 2367 (1986).

    Article  Google Scholar 

  59. G. D. J. Phillies J. Phys. Chem. 96: 10061 (1992).

    Article  Google Scholar 

  60. C. G. Phillips and K. M. Jansons Macromolecules 23: 1717 (1990).

    Article  Google Scholar 

  61. C. G. Phillips J. Chem. Phys. 95: 4593 (1991).

    Article  ADS  Google Scholar 

  62. D. C. Rapaport The Art of Molecular Dynamics Simulation, 2nd edition (Cambridge University Press, 2004).

  63. H. Risken The Fokker-Planck Equation (Springer, Berlin, 1989).

    MATH  Google Scholar 

  64. J. M. Rohwer, P. W. Postma, B. N. Kholodenko, and H. V. Westerhoff Proc. Natl. Acad. Sci. U.S.A. 95: 10547 (1998).

    Article  ADS  Google Scholar 

  65. J. J. Rottler and A. C. Maggs Phys. Rev. Lett. 93: 170201 (2004).

    Article  ADS  Google Scholar 

  66. M. A. Savageau J. Theor. Biol. 176: 115 (1995).

    Article  Google Scholar 

  67. S. Schnell and T. E. Turner Prog. Biophys. Mol. Biol. 85: 235 (2004).

    Article  Google Scholar 

  68. M. Thellier, J.-C. Vincent, S. Alexandre, J.-P. Lassalles, B. Deschrevel, V. Norris and C. Ripoll C. R. Biologies 326: 149 (2003).

    Article  Google Scholar 

  69. M. Thellier, G. Legent, V. Norris, C. Baron and C. Ripoll C. R. Biologies 327: 1017 (2004).

    Article  Google Scholar 

  70. M. Tokita, T. Miyoshi, K. Takegoshi and K. Hikichi Phys. Rev. E 53: 1823 (1996).

    Article  ADS  Google Scholar 

  71. M. Tokuyama and I. Oppenheim Physica A 94: 501 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  72. T. E. Turner, S. Schnell and K. Burrage Comp. Biol. Chem. 28: 165 (2004).

    Article  MATH  Google Scholar 

  73. V. Zehnle and G. Searby J. Phys. Paris 50: 1083 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Schnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grima, R., Schnell, S. A Mesoscopic Simulation Approach for Modeling Intracellular Reactions. J Stat Phys 128, 139–164 (2007). https://doi.org/10.1007/s10955-006-9202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9202-z

Keywords

Navigation