Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling.

*Management Science*,

*34*, 391–401.

CrossRefGoogle Scholar
Balas, E. (1968). Machine sequencing via disjunctive graphs: an implicit enumeration algorithm.

*Operations Research*,

*17*, 941–957.

CrossRefGoogle Scholar
Barany, I. (1981). A vector sum theorem and its application to improving flow shop guarantees.

*Mathematics of Operations Research*,

*6*, 445–452.

CrossRefGoogle Scholar
Bertsimas, D., & Gamarnik, D. (1999). Asymptotically optimal algorithms for job shop scheduling and packet routing.

*Journal of Algorithms*,

*33*, 296–318.

CrossRefGoogle Scholar
Bertsimas, D., & Sethuraman, J. (2002). From fluid relaxations to practical algorithms for job shop scheduling: the makespan objective.

*Mathematical Programming*,

*1*, 61–102.

CrossRefGoogle Scholar
Bertsimas, D., Gamarnik, D., & Sethuraman, J. (2003). From fluid relaxations to practical algorithms for job shop scheduling: the holding cost objective.

*Operations Research*,

*51*(5), 798–813.

CrossRefGoogle Scholar
Boudoukh, T., Penn, M., & Weiss, G. (1998). Job-shop—an application of fluid approximation. In I. Gilad (Ed.), *Proceedings of the tenth conference of industrial engineering and management*, pp. 254–258. June 1998, Haifa Israel.

Boudoukh, T., Penn, M., & Weiss, G. (2001). Scheduling job shops with some identical or similar jobs.

*Journal of Scheduling*,

*4*, 177–199.

CrossRefGoogle Scholar
Carlier, J., & Pinson, E. (1989). An algorithm for solving the job-shop problem.

*Management Science*,

*35*(2), 164–176.

CrossRefGoogle Scholar
Chen, H., & Yao, D. D. (2003).

*Fundamentals of queuing networks, performance, asymptotics and optimization*. New York: Springer.

Google Scholar
Chen, M., Pandit, C., & Meyn, S. (2003). In search of sensitivity in network optimization.

*Queuing Systems Theory and Applications*,

*44*, 313–363.

CrossRefGoogle Scholar
Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967).

*Theory of scheduling*. Reading: Addison-Wesley.

Google Scholar
Dai, J. G., & Lin, W. (2005). Maximum pressure policies in stochastic processing networks.

*Operations Research*,

*53*, 197–218.

CrossRefGoogle Scholar
Dai, J. G., & Lin, W. (2006, submitted). Asymptotic optimality of maximum pressure policies in stochastic processing networks. *Annals of Applied Probability*.

Dai, J. B., & Weiss, G. (2002). A fluid heuristic for minimizing makespan in job-shops.

*Operations Research*,

*50*, 692–707.

CrossRefGoogle Scholar
Demers, A., Keshav, S., & Shenker, S. (1990). Analysis and simulation of a fair queuing algorithm. *Internetworking Research and Experience, 1*.

Gantt, H. L. (1910) *Work, wages and profit*. The Engineering Magazine, New York, 1910; republished as *Work, wages and profits*, Easton, Pennsylvania, Hive Publishing Company, 1974, ISBN 879600489.

Garey, M. R., & Johnson, D. S. (1979).

*Computers and intractability: a guide to the theory of NP-completeness*. San Francisco: Freeman.

Google Scholar
Gittins, J. C. (1979). Bandit processes and dynamic allocation indices.

*J Royal Statistical Society Series B*,

*14*, 148–167.

Google Scholar
Goldratt, E. M., & Cox, J. (1987).

*The goal: excellence in manufacturing*. Croton-on-Hudson: North River Press.

Google Scholar
Greenberg, A. G., & Madras, N. (1992). How fair is fair queuing?

*Journal of the Association for Computing Machinery*,

*39*, 568–598.

Google Scholar
Hanen, C. (1994). Study of a NP-hard cyclic scheduling problem: the recurrent job-shop.

*European Journal of Operational Research*,

*72*, 82–101.

CrossRefGoogle Scholar
Harrison, J. M. (1988). Brownian models of queuing networks with heterogeneous customer populations. In W. Fleming, & P. L. Lions (Eds.),

*Proceedings of the IMA workshop on stochastic differential systems*. New York: Springer.

Google Scholar
Harrison, J. M., & Van Mieghem, J. (1997). Dynamic control of Brownian networks: state space collapse and equivalent workload formulations.

*Annals of Applied Probability*,

*7*, 747–771.

CrossRefGoogle Scholar
Henderson, S. G., Meyn, S. P., & Tadic, V. B. (2003). Performance evaluation and policy selection in multiclass networks.

*Discrete Event Dynamic Systems*,

*13*(1–2), 149–189.

CrossRefGoogle Scholar
Hochbaum, D. S., & Shamir, R. (1991). Strongly polynomial algorithms for high multiplicity scheduling problem.

*Operations Research*,

*39*, 648–653.

CrossRefGoogle Scholar
Jansen, K., Solis-Oba, R., & Srividenko, M. (2000). *Makespan minimization in job shops, a linear time approximation scheme*. Preprint, see also preliminary versions in STOC’99 and APPROX’99.

Klimov, G. P. (1974). Time sharing service systems I.

*Theory of Probability and Applications*,

*19*, 532–551.

CrossRefGoogle Scholar
Kopzon, A., Nazarathy, Y., & Weiss, G. (2008). *A push pull system with infinite supply of work*. Preprint.

Kulak, O., Yilmaz, I. O., & Gŭnther, H. O. (2007). PCB assembly scheduling for collect-and-place machines using genetic algorithms.

*International Journal of Production Research*,

*45*(17), 3949–3969.

CrossRefGoogle Scholar
Kushner, H. J. (2001).

*Heavy traffic analysis of controlled queuing and communication networks*. Berlin: Springer.

Google Scholar
Kushner, H. J., & Martins, L. F. (1990). Routing and singular control for queuing networks in heavy traffic.

*SIAM Journal on Control and Optimization*,

*28*, 1209–1233.

CrossRefGoogle Scholar
Kushner, H. J., & Ramachandran, K. M. (1989). Optimal and approximately optimal control policies for queues in heavy traffic.

*SIAM Journal on Control and Optimization*,

*27*, 1293–1318.

CrossRefGoogle Scholar
Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (1993). In S. C. Graves, A. H. G. Rinnoy Kan, & P. H. Zipkin (Eds.),

*Sequencing and scheduling: algorithms and complexity, in logistics of production and inventory*. New York: Elsevier Science.

Google Scholar
Martin, P., & Shmoys, D. B. (1996). A new approach to computing optimal schedules for the job-shop scheduling problem. In *International IPCO conference* (pp. 389–403).

Matsuo, H. (1990). Cyclic sequencing problems in the two-machine permutation flow shop: complexity, worst-case and average-case analysis.

*Naval Research Logistics*,

*37*, 679–694.

CrossRefGoogle Scholar
McCormick, S. T., Pinedo, M. L., Shenker, S., & Wolf, B. (1989). Sequencing in an assembly line with blocking to minimize cycle time.

*Operations Research*,

*37*, 925–935.

CrossRefGoogle Scholar
Meyn, S. P. (2001). Sequencing and routing in multiclass queuing networks, part I: feedback regulation.

*SIAM Journal on Control and Optimization*,

*40*, 741–776. IEEE International Symposium on Information Theory, Sorrento, Italy, June 25–June 30, 2000.

CrossRefGoogle Scholar
Meyn, S. P. (2008).

*Control techniques for complex networks*. Cambridge: Cambridge University Press.

Google Scholar
Moallemi, C. C., Kumar, S., & Van Roy, B. (2008). *Approximate and data-driven dynamic programming for queuing networks*.

Muth, J. F., & Thompson, G. L. (1954).

*Industrial scheduling*. Prentice-Hall: Englewood Cliffs.

Google Scholar
Nazarathy, Y. (2001). *Evaluation of on line scheduling rules for high volume job shop problems: a simulation study*. MA thesis, The University of Haifa, Israel.

Nazarathy, Y., & Weiss, G. (2008). *Positive Harris recurrence and diffusion scale analysis of a push pull queuing network*. Preprint.

Nazarathy, Y., & Weiss, G. (2009). Near optimal control of queuing networks over a finite time horizon.

*Annals of Operations Research*,

*170*, 233–249.

CrossRefGoogle Scholar
Ni-o-Mora, J. (2001). Restless bandits, partial conservation laws and indexability.

*Advances in Applied Probability*,

*33*, 76–98.

CrossRefGoogle Scholar
Ni-o-Mora, J. (2002). Dynamic allocation indices for restless projects and queuing admission control: a polyhedral approach.

*Mathematical Programming, Series A*,

*93*, 361–413.

CrossRefGoogle Scholar
Ni-o-Mora, J. (2006). Restless bandit marginal productivity indices, diminishing returns and optimal control of make-to-order/make-to-stock M/G/1 queues.

*Mathematics of Operations Research*,

*31*, 50–84.

CrossRefGoogle Scholar
Papadimitriou, C. H., & Tsitsiklis, J. N. (1999). The complexity of optimal queuing network control.

*Mathematics of Operations Research*,

*24*(2), 293–305.

CrossRefGoogle Scholar
Parekh, A. K., & Gallager, R. G. (1993). A generalized processor sharing approach to flow control in integrated services networks: the single-node case.

*IEEE/ACM Transactions on Networking*,

*1*, 344–357.

CrossRefGoogle Scholar
Parekh, A. K., & Gallager, R. G. (1994). A generalized processor sharing approach to flow control in integrated services networks: the multiple-node case.

*IEEE/ACM Transactions on Networking*,

*2*, 137–150.

CrossRefGoogle Scholar
Pinedo, M. (2002).

*Scheduling, theory, algorithms and systems* (3rd edn.). New York: Springer.

Google Scholar
Roundy, R. (1992). Cyclic scheduling for job shops with identical jobs.

*Mathematics of Operations Research*,

*17*, 842–865.

CrossRefGoogle Scholar
Sevastyanov, S. V. (1987). Bounding algorithm for the routing problem with arbitrary paths and alternative servers.

*Cybernetics*,

*22*, 773–781.

CrossRefGoogle Scholar
Sevastyanov, S. V. (1994). On some geometric methods in scheduling theory, a survey.

*Discrete Applied Mathematics*,

*55*, 59–82.

CrossRefGoogle Scholar
Sevastyanov, S. V., & Woeginger, G. J. (1998). Makespan minimization in open shops, a polynomial type approximation scheme.

*Mathematical Programming*,

*82*, 191–198.

Google Scholar
Shmoys, D. B., Stein, C., & Wein, J. (1994). Improved approximation algorithms for shop scheduling problems.

*SIAM Journal on Computing*,

*23*, 617–632.

CrossRefGoogle Scholar
Stallings, W. (2007).

*Data and computer communications* (8th edn.). Upper Saddle River: Prentice-Hall.

Google Scholar
Stolyar, A. L. (2004). MaxWeight scheduling in a generalized switch: state space collapse and equivalent workload minimization under complete resource pooling.

*Annals of Probability*,

*14*, 1–53.

CrossRefGoogle Scholar
Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing problems with application to job shop scheduling.

*Management Science*,

*38*, 1495–1509.

CrossRefGoogle Scholar
Tassiulas, L. (1995). Adaptive back-pressure congestion control based on local information.

*IEEE Transactions on Automatic Control*,

*40*, 236–250.

CrossRefGoogle Scholar
Van Zant, P. (2004).

*Microchip fabrication* (5th edn.). New York: McGraw-Hill.

Google Scholar
Veatch, M. H. (2005). *Approximate dynamic programming for networks: fluid models and constraint reduction*. Preprint.

Wein, L. M. (1992). Scheduling networks of queues: heavy traffic analysis of a multistation network with controllable inputs.

*Operations Research*,

*40*, S312–S334.

CrossRefGoogle Scholar
Weiss, G. (1995). On the optimal draining of a fluid re-entrant line. In F. P. Kelly, & R. Williams (Eds.),

*IMA volumes in mathematics and its applications*
*: Vol.* 71.

*Stochastic networks, proceedings of ima workshop*, Minnesota, February 1994 (pp. 91–104). New York: Springer.

Google Scholar
Weiss, G. (1999). Scheduling and control of manufacturing systems—a fluid approach. In *Proceedings of the 37th allerton conference*, (pp. 577–586), Monticello, IL, 21–24 September 1999.

Weiss, G. (2005). Jackson networks with unlimited supply of work and full utilization.

*Journal of Applied Probability*,

*42*, 879–882.

CrossRefGoogle Scholar
Whittle, P. (1981). Restless bandits: activity allocation in a changing world.

*Journal of Applied Probability*
*25A*, 287–298.

Google Scholar
Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K., Sevast’ynaov, S. V., & Shmoys, D. B. (1997). Short shop schedules.

*Operations Research*,

*45*, 288–294.

CrossRefGoogle Scholar
Zhang, H. (1995). Service disciplines for guaranteed performance service in packet-switching networks. In *Proceedings of the IEEE, October 1995*.