Skip to main content
Log in

Preparation and Thermo-Mechanical Characterization of Chitosan Loaded Methylcellulose-Based Biodegradable Films: Effects of Gamma Radiation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan (0.1–1%, w/w), dissolved in 2% acetic acid solution, was added into 1% methylcellulose (MC)-based formulation containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween®80. Films were prepared by casting. Puncture strength (PS), puncture deformation (PD), viscoelasticity coefficient and water vapour permeability (WVP) of the films were measured. The PS value of 312 N/mm was observed for MC-based films containing 0.25% chitosan. Values of PD, viscoelasticity coefficient and WVP of these films were 5.0 mm, 44.1%, and 6.0 g mm/m2 day kPa, respectively. The MC-based films containing 0.25% chitosan were also exposed to gamma radiation (0.5–50 kGy). The PS of the treated films decreased significantly from 312 at 0 kGy to 201 N/mm when treated at a dose of 50 kGy. However, WVP values were not affected by increasing irradiation the dose used. The Fourier Transform Infrared spectroscopy supported the molecular interactions due to addition of chitosan in MC-based films. Thermo gravimetric analysis and differential scanning calorimetric experiments showed that thermal properties of the films were significantly improved by chitosan loading. Surface topography of the films was studied by scanning electron microscopy and found rougher due to chitosan addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salmieri S, Lacroix M (2006) J Agric Food Chem 54:10205–10214

    Article  CAS  Google Scholar 

  2. Ciesala K, Salmieri S, Lacroix M (2006) J Agric Food Chem 54:8899–8908

    Article  Google Scholar 

  3. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  4. Le Tien C, Letendre M, Ispas-Szabo P, Mateescu MA, Delmas-Patterson G, Yu H-L, Lacroix M (2000) J Agric Food Chem 48:5566–5575

    Article  CAS  Google Scholar 

  5. Heng Y, Zhang P, Lee RL (2004) Biotechnol Bioeng 88:798–824

    Google Scholar 

  6. Erdohan ZÖ, Turhan KN (2005) Packag Technol Sci 18:295–302

    Article  CAS  Google Scholar 

  7. Daiyong Y, Farriol X (2006) J Appl Polym Sci 100:1785–1793

    Article  Google Scholar 

  8. Shih CM, Shieh YT, Twu YK (2009) Carbohyd Polym 78:169–174

    Article  CAS  Google Scholar 

  9. Bain MK, Bhowmik M, Ghosh SN, Chattopadhyay D (2009) J Appl Polym Sci 113:1241–1246

    Article  CAS  Google Scholar 

  10. Filho GR, Rosana Assunc MN, Vieira JG, Meireles C, Cerqueira DA, Barud HS, Ribeiro SJL, Messaddeq Y (2007) Polym Degrad Stabil 92:205–210

    Article  Google Scholar 

  11. Turhan KN, Sahbaz F, Güner A (2001) J Food Sci 66:59–62

    Article  CAS  Google Scholar 

  12. Velazquez G, Gomez AH, Polo MO (2003) J Food Eng 59:79–84

    Article  Google Scholar 

  13. Majeti NV, Kumar RA (2000) J React Funct Polym 46:1–27

    Article  Google Scholar 

  14. Kittur FS, Prashanth KVH, Sankar KU, Tharanathan RN (2000) Carbohyd Polym 49:185–193

    Article  Google Scholar 

  15. Roberts GAF (1992) Chitin chemistry. The Macmillan Press, London, pp 1–14

    Google Scholar 

  16. Mathur NK, Narang CK (1990) J Chem Educ 67:938

    Article  CAS  Google Scholar 

  17. Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y (1998) Carbohyd Polym 36:49–59

    Article  CAS  Google Scholar 

  18. Aiba S (1989) Int J Biolog Macromol 11:249–252

    Article  CAS  Google Scholar 

  19. Hirano S (1996) J Biotech Annu Rev 2:235–258

    Google Scholar 

  20. Shigemasa R, Minami S (1995) Biotechol Genet Eng 13:383–420

    Google Scholar 

  21. Haque P, Mustafa AI, Khan MA (2007) Carbohyd Polym 68:109–115

    Article  CAS  Google Scholar 

  22. Srinivasa PC, Ravi R, Tharanathan RN (2007) J Food Eng 80:184–189

    Article  CAS  Google Scholar 

  23. Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Biomaterials 28:781–790

    Article  CAS  Google Scholar 

  24. Xu H, Ma L, Shi H, Goa C, Han C (2007) Adv Polym Tech 18:869–875

    Article  CAS  Google Scholar 

  25. Omura Y, Renbutsu E, Morimoto M, Saimoto H, Shigemasa Y (2003) Adv Polym Tech 14:35–39

    Article  CAS  Google Scholar 

  26. Qin Y (2008) J Appl Polym Sci 107:993–999

    Article  CAS  Google Scholar 

  27. Caner C, Cansiz O (2007) J Sci Food Agric 87:227–232

    Article  CAS  Google Scholar 

  28. Alam R, Khan MA, Khan RA (2008) J Polym Environ 16:213–219

    Article  CAS  Google Scholar 

  29. Khan MA, Alam R, Noor FG, Rahman MA, Khan RA (2009) J Macromol Sci A 46:751–758

    Article  CAS  Google Scholar 

  30. Gontard N, Guilbert S, Cuq J-L (1992) J Food Sci 57:190–199

    Article  CAS  Google Scholar 

  31. Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany S, Lacroix M (2010) J Agric Food Chem 58:7878–7885

    Article  CAS  Google Scholar 

  32. Ciesala K, Salmieri S, Lacroix M (2006) J Agric Food Chem 54:6374–6384

    Article  Google Scholar 

  33. ASTM (1983) Standard test method for water vapor transmission of materials. American Society for Testing of Materials, Philadelphia (Method 15.09:E96)

  34. Pinotti A, Garcia MA, Martinoa MN, Zaritzkya NE (2007) Food Hydrocoll 21:66–72

    Article  CAS  Google Scholar 

  35. Wanchoo RK, Sharma PK (2003) Eur Polym J 39:1481–1490

    Article  CAS  Google Scholar 

  36. Chen M, Deng J, Yang F, Gong Y, Zhao N, Zhang X (2003) Biomaterials 24:2871–2880

    Article  Google Scholar 

  37. Sionkowska A, Wisniewski J, Skopinska J, Kennedy CJ, Wess TJ (2004) Biomaterials 25:795–801

    Article  CAS  Google Scholar 

  38. Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE (2005) J Agric Food Chem 53:3888–3894

    Article  CAS  Google Scholar 

  39. Zaccaron C, Oliveira R, Guiotoku M, Pires A, Soldi V (2005) Polym Degrad Stabil 90:21–27

    Article  CAS  Google Scholar 

  40. Ivanova NV, Korolenko EA, Korolik EV, Zhbankov RG (1989) J Appl Spectrosc 51:301–306

    Article  CAS  Google Scholar 

  41. Usmanov KU, Yulchibaev AA, Dordzhin GS, Valiev A (1971) Fibre Chem 3:46–48

    Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of Agriculture, Fisheries and Food of the province of Quebec (PSIA Program) and by a grant from the International Atomic Energy Agency (IAEA) for the fellowship financial support to Ruhul A. Khan’s training. IAEA is also acknowledged for financial support: Research Agreement No. 14756. The Natural Sciences and Engineering Research Council of Canada (NSERC), le Fond de Recherche sur la Nature et les Technologies (FQRNT) and BSA Food Ingredients s.e.c/l.p supported Dominic Dussault through the Industrial Innovation Scholarships BMP Innovation. The authors would like to thanks Nordion Inc. and Canadian Irradiation Center for irradiation procedures, and Winpak Division Ltd for providing packaging in irradiation procedures. The Authors highly appreciate SEM support from Mrs. Line Mongeon, Technician of Biomedical Engineering Department and the Facility Electron Microscopy Research FEMR, at McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lacroix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, R.A., Salmieri, S., Dussault, D. et al. Preparation and Thermo-Mechanical Characterization of Chitosan Loaded Methylcellulose-Based Biodegradable Films: Effects of Gamma Radiation. J Polym Environ 20, 43–52 (2012). https://doi.org/10.1007/s10924-011-0336-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0336-y

Keywords

Navigation