Skip to main content
Log in

Forward-Looking WDM Network Reconfiguration with Per-Link Congestion Control

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

We study reconfigurations of wavelength-routed Wavelength Division Multiplexing (WDM) networks in response to lightpath demand changes, with the objective of servicing more lightpath demands without additional network resources from a long-term network operation point of view. For the reconfiguration problem under study, we assume WDM network operators are provided with lightpath demands in batches. With limited network resources, our problem has two unique challenges: balancing network resource allocations between current and future lightpath demands, and modeling future lightpath demands. The first challenge implies making tradeoffs between accepting as many current immediate lightpath demands as possible and reserving a certain amount of network resources for near future predicted lightpath demands. The second challenge implies modeling future predicted lightpath demands, which are not exactly known or certain as the current lightpath demands. Our proposed model allows a natural separation between the operation of the optical layer and the user traffic layer (predominantly the IP-layer), while supporting their interactions, for which we propose a new formulation for per-link congestion control, associated with a mathematical solution procedure. Our simulation results reveal that by properly controlling resource allocations in the current session using our proposed mechanism, rejections in future sessions are greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Saad, M., Luo, Z.Q.: Reconfiguration with no service disruption in multifiber WDM networks. IEEE/OSA J. Lightwave Technol. 23(10), 3092–3104 (2005)

    Article  Google Scholar 

  2. Zhou, B., Zheng, J., Mouftah, H.T.: Dynamic reconfiguration based on balanced alternate routing algorithm (BARA) for all-optical wavelength-routed WDM networks, IEEE Global Telecommunications Conference (GLOBECOM 2002), pp. 2713–2717, Taipei, Taiwan, China (2002)

  3. Zheng, J., Zhou, B., Mouftah, H.T.: Virtual topology design and reconfiguration for virtual private networks (VPN) over all optical WDM networks. Photon Netw. Commun. 7(3), 255–266 (2004)

    Article  Google Scholar 

  4. Sreenath, N., Murthy, C.S.R., Gurucharan, B.H., Mohan, G.: A two-stageapproach for logical topology reconfiguration of WDM OPTICAL NETWORKS. Optic. Netw. Mag. 2(3), 58–71 (2001)

    Google Scholar 

  5. Zhang,Y., Yang, O., Wu, J., Savoie,M.: Lightpath reconfiguration in a semi-dynamic WDM network, 49th Annual IEEE Global Communications Conference (GLOBECOM 2006), San Francisco, California, USA, (2006)

  6. Zhang, J.Y., Yang, O., Wu, J., Savoie, M.: Optimization of semi-dynamic lightpath rearrangement in a WDM network. IEEE J. Select. Areas Commun. Optic. Commun. Netw. Ser. 25(9), 3–17 (2007)

    Article  Google Scholar 

  7. Din, D.R.: A genetic algorithm for solving virtual topology configuration transition problem in WDM network. Comput. Commun. 30(4), 767–781 (2007)

    Article  Google Scholar 

  8. Din, D.R., Chiu, Y.S.: A genetic algorithm for solving virtual topology reconfiguration problem in survivable WDM networks with reconfiguration constraint. Comput. Commun. 31(10), 2520–2533 (2008)

    Article  Google Scholar 

  9. Palmieri, F., Fiore, U., Ricciardi, S.: A GRASP-basednetwork re-optimization strategy for improving RWA in multi-constrained optical transport infrastructures. Comput. Commun. 33(15), 1809–1822 (2010)

    Article  Google Scholar 

  10. Lee, K., Zhang, L., Youn, C.H.: An adaptive virtual topology reconfiguration policy in multi-wavelength optical Internet. Eur. Transact. Telecommun. 14(5), 417–422 (2003)

    Google Scholar 

  11. Zhang, L., Lee, K.H., Youn, C.H., Yeo, H.G.: Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical internet, Workshop on High Performance Switching and Routing (HPSR 2002), pp. 127–131, Kobe, Japan (2002)

  12. Ohsita, Y., Miyamura, T., Arakawa, S., Ata, S., Oki, E., Shiomoto, K., Murata, M.: Gradually reconfiguring virtual network topologies based on estimated traffic matrices. 26th IEEE International Conference on Computer Communications (INFOCOM 2007), pp. 2511–2515, Anchorage, Alaska, USA (2007)

  13. Ohsita, Y., Miyamura, T., Arakawa, S., Ata, S., Oki, E., Shiomoto, K., Murata, M.: Gradually reconfiguring virtual network topologies based on estimated traffic matrices. IEEE/ACM Transact. Netw. 18(1), 177–189 (2009)

    Article  Google Scholar 

  14. Koizumi, Y., Miyamura, T., Arakawa, S., Oki, E., Shiomoto, K., Murata, M.: Robust virtual network topology control based on attractor selection, 13th International Conference on Optical Network Design and Modeling (ONDM 2009), pp. 1–6, Braunschweig, Germany (2009)

  15. Wu, J.: A survey of WDM network reconfiguration: Strategies and triggering methods. Comput. Netw. 55(11), 2622–2645 (2011)

    Article  Google Scholar 

  16. Gencata, A., Mukherjee, B.: Virtual-topology adaptation for WDM mesh networks under dynamic traffic. IEEE/ACM Transact. Netw. 11(2), 236–247 (2003)

    Article  Google Scholar 

  17. Shimazaki, D., Oki, E., Shiomoto, K.: Multi-layer Traffic engineering experimental system in IP optical network, workshop on High Performance Switching and Routing (HPSR 2007), pp. 1–6, New York City, USA (2007)

  18. Pongpaibool, P., Doverspike, R., Roughart, M., Gottlieb, J., Handling IP traffic surges via optical layer reconfiguration, Optical Fiber Communication Conference (OFC 2002), pp. 427–428, Anaheim, California, USA (2002)

  19. Tran, P.N., Killat, U.: Dynamic reconfiguration of logical topology for WDM networks under traffic changes, IEEE Network Operations and Management Symposium (NOMS 2008), pp. 279-286, Salvador, Bahia, Brazil (2008)

  20. Sumathi, M., Vanathi, P.T.: Dynamic reconfiguration of lightpath with priority based deletion, 10th IEEE Singapore International Conference on Communication systems (ICCS 2006), pp. 1–5, Singapore (2006)

  21. Bhandari, S., Park, E.K.: Dynamic reconfiguration for optical network, 14th International Conference on Computer Communications and Networks (ICCCN 2005), pp. 243–248, San Diego, California, USA (2005)

  22. Assis, K.D.R., Savasini, M.S., Waldman, H.: Iterative optimization in VTD to maximize the open capacity of WDM networks, lecture notes in computer science, vol 3124, Springer Berlin/Heidelberg, 11th International Conference on Telecommunications (ICT 2004), pp. 735–742, Fortaleza, Brazil (2004)

  23. Narula-Tam, A., Modiano, E.: Dynamic load balancing in WDM packet networks with and without wavelength constraints. IEEE J. Select. Areas Commun. 18(10), 1972–1979 (2000)

    Article  Google Scholar 

  24. Mohan, G., Ernest, P.H.H., Bharadwaj, V.: Virtual topology reconfiguration in IP/WDM optical ring networks. Comput. Commun. 26(2), 91–102 (2003)

    Article  Google Scholar 

  25. Sreenath, N., Murthy, C.S.R.: On-line reconfiguration of virtual topologies in wavelength-routed WDM networks. J. High Speed Netw. 12(3–4), 141–169 (2002)

    Google Scholar 

  26. Wei, J.Y.: Advances in the management and control of optical internet. IEEE J. Sel. Areas Commun. 20(4), 768–785 (2002)

    Article  Google Scholar 

  27. Bhatia, R., Kodialam, M., Lakshman, T.V.: Fast network re-optimization schemes for MPLS and optical networks. Comput. Netw. 50(3), 317–331 (2006)

    Article  MATH  Google Scholar 

  28. Yao, W., Ramamurthy, B.: Rerouting schemes for dynamic traffic grooming in optical WDM mesh networks, IEEE Global Telecommunications Conference (GLOBECOM 2004), vol. 3, pp. 1793–1797, Dallas, Taxes, USA (2004)

  29. Lee, K.C., Li, V.O.K.: A wavelength rerouting algorithm in wide-area all-optical networks. IEEE/OSA J. Lightwave Technol. 14(6), 1218–1229 (1996)

    Article  Google Scholar 

  30. Mohan, G., Murthy, C.S.R.: A time optimal wavelength rerouting algorithm for dynamic traffic in WDM networks. IEEE/OSA J. Lightwave Technol. 17(3), 406–417 (1999)

    Article  Google Scholar 

  31. Xue, G.: Optimal lightpath routing and rerouting in WDM networks, IEEE Global Telecommunications Conference (GLOBECOM 2001), vol. 4, pp. 2124–2128, San Antonio, Texas, USA (2001)

  32. Koubàa, M., Gagnaire, M.: Lightpath rerouting strategies in WDM All-optical networks under scheduled and random traffic. IEEE/OSA J. Optic. Commun. Netw. 2(10), 859–871 (2010)

    Article  Google Scholar 

  33. Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective, 3rd edn. Morgan Kaufmann, San Francisco, California, USA (2009)

    Google Scholar 

  34. Ricciato, F., Salsano, S., Belmonte, A., Listanti, M.: Off-Line configuration of a MPLS over WDM network under time-varying offered traffic. 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), vol. 1, pp. 57–65, New York City, USA (2000)

  35. Chou, J., Lin, B.: Coarse optical circuit switching by default, rerouting over circuits for adaptation. J. Optic. Netw. 8(1), 33–50 (2009)

    Article  Google Scholar 

  36. Agrawal, G., Medhi, D.: Lightpath topology configuration for wavelength-routed IP/MPLS Networks for time-dependent traffic, IEEE Global Telecommunications Conference (GLOBECOM 2006), pp. 1–5, San Francisco, California, USA (2006)

  37. Sinha, S., Murthy, C.S.R.: Information theoretic approach to traffic adaptive WDM networks. IEEE/ACM Transact. Netw. 13(4), 881–894 (2005)

    Article  Google Scholar 

  38. Baldine, I., Rouskas, G.N.: Traffic adaptive WDM networks: A study of reconfiguration issues. IEEE/OSA J. Lightwave Technol. 19(4), 433–455 (2001)

    Article  Google Scholar 

  39. Huang, S., Dutta, R.: Spare capacity provisioning for quasi-static traffic. Comput. Netw. 51(18), 5011–5035 (2007)

    Article  MATH  Google Scholar 

  40. Huang, S., Dutta, R.: Spare Capacity provisioning for dynamic traffic grooming in optical networks, 3rd International Conference on Broadband Communications, Networks and Systems (BROADNETS 2006), pp. 1–10, San Jose, California, USA (2006)

  41. Mahalati, R., Dutta, R.: Reconfiguration of traffic grooming optical networks, First International Conference on Broadband Networks (BROADNETS 2004), pp. 170–179, San Jose, California, USA (2004)

  42. Golab, W., Boutaba, R.: Policy-driven automated reconfiguration for performance management in WDM optical networks. IEEE Commun. Magaz. 42(1), 44–51 (2004)

    Article  Google Scholar 

  43. Juttner, A., Szabo, I., Szentesi, A.: On bandwidth efficiency of the hose resource management model in virtual private networks, 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), vol. 1, pp. 386–395, San Francisco, California, USA (2003)

  44. Kumar, A., Rastogi, R., Silberschatz, A., Yener, B.: Algorithms for provisioning virtual private networks in the hose model. IEEE/ACM Transact. Netw. 10(4), 565–578 (2002)

    Article  Google Scholar 

  45. Kodialam, M., Lakshman, T.V., Sengupta, S.: Traffic-oblivious routing in the hose model, IEEE/ACM Transact. Netw. 19(3), 774–787 (2011)

    Article  Google Scholar 

  46. Kodialam, M., Lakshman, T.V., Sengupta, S.: Maximum throughput routing of traffic in the hose model, 25th IEEE International Conference on Computer Communications. Proceedings (INFOCOM 2006), pp. 1–11, Barcelona, Spain (2006)

  47. Wang, H., Poo, G.S.: Blocking performance of the hose model and the pipe model for VPN service provisioning over WDM optical networks. J. Optic. Netw. 3(8), 623–635 (2004)

    Article  Google Scholar 

  48. Zhang, X., Li, L.: Robust routing algorithms based on Valiant load balancing for wavelength-division-multiplexing mesh networks, Optical Engineering, vol. 45(8), No. 8, paper 085003 (2006)

  49. Dai, R., Li, L., Wang, S.: Adaptive load-balancing in WDM mesh networks with performance guarantees. Photon Netw. Commun. 21(3), 215–227 (2011)

    Article  Google Scholar 

  50. Mukherjee, B., Banerjee, D., Ramamurthy, S., Mukherjee, A.: Some principles for designing a wide-area WDM optical network. IEEE/ACM Transact. Netw. 4(5), 684–696 (1996)

    Article  Google Scholar 

  51. Leung, D., Grover, W.D.: Capacity planning of survivable mesh-based transport networks under demand uncertainty. Photon Netw. Commun. 10(2), 123–140 (2005)

    Article  Google Scholar 

  52. Kennington, J., Olinick, E., Lewis, K., Ortynski, A., Spiride, G.: Robust solutions for the DWDM routing and provisioning problem: Models and algorithms. Optic. Netw. Magaz. 4(2), 74–84 (2003)

    Google Scholar 

  53. Leung, D., Arakawa, S., Murata, M., Grover, W.D.: Re-optimization strategies to maximize traffic-carrying readiness in WDM survivable mesh networks, Technical Digest of 2005 Optical Fiber Communication Conference (OFC/NFOEC 2005), vol. 3, Anaheim, California, USA, paper OWG6, (2005)

  54. Tran, P.N., Killat, U.: Design of logical topology for IP over WDM networks: Network performance vs. resource utilization, 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium, (2007)

  55. Yang, H., Bell, M.G.H.: Models and algorithms for road network design: A review and some new developments. Transp. Rev. 18(3), 257–278 (1998)

    Article  Google Scholar 

  56. Zhang, J.Y., Wu, J., Bochmann, G., Savoie, M.: Resource criticality analysis of static resource allocations and its applications in WDM network planning. IEEE/OSA J. Optic. Commun. Netw. 1(4), 294–306 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Jing Wu acknowledges the research support from the State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wu.

Appendix: Solution Methodology

Appendix: Solution Methodology

By properly relaxing some constraints using Lagrange multipliers, we will derive in this section the DP (Dual Problem), which can be decomposed into subproblems that can be solved independently. A schematic depiction of the overall algorithm is given in Fig. 15.

Fig. 15
figure 15

Schematic depiction of the overall algorithm

1.1 The LR Solution Procedure

We first use the Lagrange multipliers ξ ijc , λ ic , π ij to relax respectively the wavelength channel capacity constraints (b), and link congestion constraints (c). This leads to the following Lagrangian DP (Dual Problem):

$$ \mathop {\max }\limits_{\xi ,\lambda ,\pi \ge 0} \,q = \mathop {\,\min }\limits_{{{\rm A},{\rm B},\Updelta ,\Upphi ,\Upgamma }} \left\{ {\sum\limits_{(s,d)} {\left[ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ]} } \right)} \right] + \sum\limits_{(i,j)} {G_{ij} (\gamma_{ij} ) + \sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {\xi_{ijc} \left( {\sum\limits_{(s,d)} {\sum\limits_{{0 < n \le H_{sd} }} {\delta_{ijc}^{sdn} } } - 1} \right)} } } } + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\lambda_{ic} \left( {\sum\limits_{(s,d)} {\sum\limits_{{0 < n \le H_{sd} }} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\varphi_{i,ca}^{sdn} } } } } - F_{ic} } \right)} } + \sum\limits_{(i,j)} {\pi_{ij} \left( {\sum\limits_{(s,d)} {\sum\limits_{{0 < n \le H_{sd} }} {\sum\limits_{{0 \le c < n_{ij} }} {\delta_{ijc}^{sdn} } } } - \gamma_{ij} W} \right)} } \right\}, $$

subject to the constraints (a), (d), and (e), where ξ, λ, π are respectively the vectors of Lagrange multipliers {ξ ijc }, {λ ic }, {π ij }.

After regrouping the relevant terms, the dual function leads to the following problem:

$$ \mathop {\,\min }\limits_{{{\rm A},{\rm B},\Updelta ,\Upphi ,\Upgamma }} \left\{ {\sum\limits_{(s,d)} {\left[ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ] + \sum\limits_{{(i,j)}} {\sum\limits_{{0 < c \le n_{{ij}} }} {\delta _{{ijc}}^{{sdn}} \left( {\xi _{{ijc}} + \pi _{{ij}} } \right)} } + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\lambda_{ic} \varphi_{i,ca}^{sdn} } } } } } } \right)} \right] - \sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {\xi_{ijc} } } - \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\lambda_{ic} } } F_{jc} + \sum\limits_{(i,j)} {\left( {G_{ij} (\gamma_{ij} ) - W\gamma_{ij} \pi_{ij} } \right)} } } \right\}. $$
(7)

By using the fact that \( \delta_{ijc}^{sdn} = \alpha_{sdn} \delta_{ijc}^{sdn} \) and \( \varphi_{i,ca}^{sdn} = \alpha_{sdn} \varphi_{i,ca}^{sdn} \), we can rewrite (7) as:\( \mathop {\,\min }\limits_{{{\rm A},{\rm B},\Updelta ,\Upphi ,\Upgamma }} \left\{ {\sum\limits_{(s,d)} {\left[ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ]} } \right) + \sum\limits_{{0 < n \le H_{sd} }} {\alpha_{sdn} \left( {_{sdn} \sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {(\xi_{ijc} + \pi_{ij} )\delta_{ijc}^{sdn} } } + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\lambda_{ic} \varphi_{i,ca}^{sdn} } } } } } \right)} } \right]} + \sum\limits_{(i,j)} {\left( {G_{ij} (\gamma_{ij} ) - W\gamma_{ij} \pi_{ij} } \right)} - \sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {\xi_{ijc} - \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\lambda_{ic} } } F_{jc} } } } \right\} \)Since the last two terms are independent of the decision variables (i.e., A, B, Δ, Φ, and Γ), the problem can be further simplified as:

$$ \begin{aligned} \mathop {\,\min }\limits_{{{\rm A},{\rm B},\Updelta ,\Upphi }} \left\{ {\sum\limits_{(s,d)} {\left[ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ]} } \right) + \sum\limits_{{0 < n \le H_{sd} }} {\alpha_{sdn} \left( {\sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {(\xi_{ijc} + \pi_{ij} )\delta_{ijc}^{sdn} + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\lambda_{ic} \varphi_{i,ca}^{sdn} } } } } } } } \right)} } \right]} } \right\} + \mathop {\min }\limits_{\Upgamma } \left\{ {\sum\limits_{(i,j)} {\left( {G_{ij} (\gamma_{ij} ) - W\gamma_{ij} \pi_{ij} } \right)} } \right\} \\ & = \sum\limits_{(s,d)} {\mathop {\min }\limits_{{{\rm A}_{sd} }} \left\{ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ]} } \right) + \sum\limits_{{0 < n \le H_{sd} }} {\left[ {\alpha_{sdn} \cdot \mathop {\min }\limits_{{\beta_{sdn} ,\Updelta_{sdn} ,\Upphi_{sdn} }} \left( {\sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {(\xi_{ijc} + \pi_{ij} )\delta_{ijc}^{sdn} } + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\lambda_{ic} \varphi_{i,ca}^{sdn} } } } } } } \right)} \right]} } \right\} + \sum\limits_{(i,j)} {\mathop {\min }\limits_{{\gamma_{ij} }} \left\{ {G_{ij} (\gamma_{ij} ) - W\gamma_{ij} \pi_{ij} } \right\}} ,} \\ \end{aligned} $$
(8)

which we shall refer to as the RP (Relaxed Problem).

1.2 A.2. Decomposed Subproblems

We can see that the RP is composed of two minimization subproblem sets. The first subproblem set RWSS (Routing and Wavelength-assignment Subproblem Set) is

$$ \sum\limits_{(s,d)} {\mathop {\min }\limits_{{{\rm A}_{sd} }} \left\{ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ]} } \right) + \sum\limits_{{0 < n \le H_{sd} }} {\left[ {\alpha_{sdn} \cdot \mathop {\min }\limits_{{\beta_{sdn} ,\Updelta_{sdn} ,\Upphi_{sdn} }} \left( {\sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {(\xi_{ijc} + \pi_{ij} )\delta_{ijc}^{sdn} } + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\lambda_{ic} \varphi_{i,ca}^{sdn} } } } } } } \right)} \right]} } \right\}} , $$
(9)

subject to the constraints (a), (d), and (e). RWSS can be decomposed into source–destination-level sub-problems (denoted as SDS sd ), each corresponding to one (s, d):

$$ {\text{SDS}}_{\text{sd}} = \mathop {\min }\limits_{{{\rm A}_{sd} }} \left\{ {P_{sd} \left( {\sum\limits_{{0 < n \le H_{sd} }} {[1 - \alpha_{sdn} ]} } \right) + \sum\limits_{{0 < n \le H_{sd} }} {\alpha_{sdn} \cdot I_{\text{sdn}} } } \right\}, $$
(10)

where I sdn (corresponding to every s sdn ) is defined as

$$ I_{\text{sdn}} = \mathop {\,\min }\limits_{{\beta_{sdn} ,\Updelta_{sdn} ,\Upphi_{sdn} }} \left\{ {\sum\limits_{(i,j)} {\sum\limits_{{0 < c \le n_{ij} }} {(\xi_{ijc} + \pi_{ij} )\delta_{ijc}^{sdn} } + \sum\limits_{{i \in \mathcal{V}}} {\sum\limits_{0 \le c < W} {\sum\limits_{{j \in \mathcal{V}}} {\sum\limits_{{0 \le a < n_{ij} }} {\lambda_{ic} \varphi_{i,ca}^{sdn} } } } } } } \right\}, $$
(11)

subject to the constraints (a), (d), and (e). In RWSS, there are altogether Z lightpath-level subproblems (I sdn ’s) independent of each other.

In the subproblem set CGSS (Congestion Subproblem Set), there are E independent subγproblems, each corresponding to one network link:

$$ \sum\limits_{(i,j)} {\mathop {\min }\limits_{{0 \le \gamma_{ij} \le 1}} \{ G_{ij} (\gamma_{ij} ) - \gamma_{ij} W\pi_{ij} \} } $$
(12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Zhang, J., von Bochmann, G. et al. Forward-Looking WDM Network Reconfiguration with Per-Link Congestion Control. J Netw Syst Manage 20, 6–33 (2012). https://doi.org/10.1007/s10922-011-9212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-011-9212-2

Keywords

Navigation