, Volume 15, Issue 2, pp 171-190
Date: 13 Mar 2007

A Survey of Fault Management in Wireless Sensor Networks

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Wireless sensor networks are resource-constrained self-organizing systems that are often deployed in inaccessible and inhospitable environments in order to collect data about some outside world phenomenon. For most sensor network applications, point-to-point reliability is not the main objective; instead, reliable event-of-interest delivery to the server needs to be guaranteed (possibly with a certain probability). The nature of communication in sensor networks is unpredictable and failure-prone, even more so than in regular wireless ad hoc networks. Therefore, it is essential to provide fault tolerant techniques for distributed sensor applications. Many recent studies in this area take drastically different approaches to addressing the fault tolerance issue in routing, transport and/or application layers. In this paper, we summarize and compare existing fault tolerant techniques to support sensor applications. We also discuss several interesting open research directions.

Lilia Paradis is currently a graduate student in the Department of Mathematical and Computer Sciences, Colorado School of Mines. She is also part of the Toilers Ad Hoc Networking research group. She is interested in distributed communication protocols for wireless sensor networks.
Qi Han received the PhD degree in computer science from the University of California, Irvine in 2005. She is currently an assistant professor in the Department of Mathematical and Computer Sciences, Colorado School of Mines. Her research interests include distributed systems, middleware, mobile and pervasive computing, systems support for sensor applications, and dynamic data management. She is specifically interested in developing adaptive middleware techniques for next generation distributed systems. She is a member of the IEEE and the ACM.