Skip to main content

Advertisement

Log in

Development of a Wearable Motor-Imagery-Based Brain–Computer Interface

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A motor-imagery-based brain–computer interface (BCI) is a translator that converts the motor intention of the brain into a control command to control external machines without muscles. Numerous motor-imagery-based BCIs have been successfully proposed in previous studies. However, several electroencephalogram (EEG) channels are typically required for providing sufficient information to maintain a specific accuracy and bit rate, and the bulk volume of these EEG machines is also inconvenient. A wearable motor imagery-based BCI system was proposed and implemented in this study. A wearable mechanical design with novel active comb-shaped dry electrodes was developed to measure EEG signals without conductive gels at hair sites, which is easy and convenient for users wearing the EEG machine. In addition, a wireless EEG acquisition module was also designed to measure EEG signals, which provides a user with more freedom of motion. The proposed wearable motor-imagery-based BCI system was validated using an electrical specifications test and a hand motor imagery experiment. Experimental results showed that the proposed wearable motor-imagery-based BCI system provides favorable signal quality for measuring EEG signals and detecting motor imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mason, G. S., and Birch, E. G., A general framework for brain–computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11:70–85, 2003. doi:10.1109/TNSRE.2003.810426.

    Article  PubMed  Google Scholar 

  2. Donchin, E., Spencer, K. M., and Wijesinghe, R., The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 8:174–179, 2000. doi:10.1109/86.847808.

    Article  CAS  Google Scholar 

  3. Piccionea, F., Giorgia, F., Tonina, P., Priftisa, K., Giovec, S., Silvonid, S., Palmasd, G., and Beverinad, F., P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin. Neurophysiol. 17:531–537, 2006. doi:10.1016/j.clinph.2005.07.024.

    Article  Google Scholar 

  4. Pfurtscheller, G., and Aranibar, A., Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46:138–146, 1979. doi:10.1016/0013-4694(79)90063-4.

    Article  CAS  PubMed  Google Scholar 

  5. Pfurtscheller, G., Stancák, A., and Neuper, C., Event-related synchronization (ERS) in the alpha band – an electrophysiological correlate of cortical idling: a review. Int. J. Psychophysiol. 24:39–46, 1996. doi:10.1016/S0167-8760(96)00066-9.

    Article  CAS  PubMed  Google Scholar 

  6. Pfurtscheller, G., Functional topography during sensorimotor activation studied with event-related desynchronization mapping. J. Clin. Neurophysiol. 6:75–84, 1989. doi:10.1097/00004691-198901000-00003.

    Article  CAS  PubMed  Google Scholar 

  7. Pfurscheller, G., EEG event-related desynchronization (ERD) and event-related synchronization (ERS). In: Niedermeyer, E., and Silva, F. L. D. (Eds.), Electroencephalography: basic principles, clinical applications and related field, 4th edition. Williams and Wilkins, Baltimore, pp. 958–967, 1999.

    Google Scholar 

  8. Pfurscheller, G., and Neuper, C., Motor imagery and direct brain computer communication. Proc. IEEE 89:1123–1134, 2001. doi:10.1109/5.939829.

    Article  Google Scholar 

  9. Pfurtscheller, G., Kalcher, J., Neuper, C., Flotzinger, D., and Pregenzer, M., On-line EEG classification during externally-paced hand movements using a neural network-based classifier. Electroencephalogr. Clin. Neurophysiol. 99:416–425, 1996. doi:10.1016/S0013-4694(96)95689-8.

    Article  CAS  PubMed  Google Scholar 

  10. Pfurtscheller, G., Neuper, C., Flotzinger, D., and Pregenzer, M., EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 103:642–651, 1997. doi:10.1016/S0013-4694(97)00080-1.

    Article  CAS  PubMed  Google Scholar 

  11. Pfurtscheller, G., Schlögl, A., Brunner, C., and Silva, F. L., Mu rhythm (De)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31:153–159, 2006. doi:10.1016/j.neuroimage.2005.12.003.

    Article  CAS  PubMed  Google Scholar 

  12. Lemm, S., Blankertz, B., Curio, G., and Müller, K. R., Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52:1541–1548, 2005. doi:10.1109/TBME.2005.851521.

    Article  PubMed  Google Scholar 

  13. Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., and Muller, K. R., Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53:2274–2281, 2006. doi:10.1109/TBME.2006.883649.

    Article  PubMed  Google Scholar 

  14. Sannelli, C., Braunand, M., and Müller, K. R., Improving BCI performance by task-related trial pruning. Neural Netw. 22:1295–1304, 2009. doi:10.1016/j.neunet.2009.08.006.

    Article  PubMed  Google Scholar 

  15. Mcfarland, D., Mccane, L., David, S. V., and Wolpaw, J. R., Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103:386–394, 1997. doi:10.1016/S0013-4694(97)00022-2.

    Article  CAS  PubMed  Google Scholar 

  16. Rodríguez-Bermúdez, G., and García-Laencina, P. J., Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. J. Med. Syst. 36:51–63, 2012. doi:10.1007/s10916-012-9893-4.

    Article  Google Scholar 

  17. Huang, Y. J., Wu, C. Y., Wong, A. M., and Lin, B. S., Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans. Biomed. Eng. 62:256–263, 2015. doi:10.1109/TBME.2014.2347318.

    Article  PubMed  Google Scholar 

  18. Pfurtscheller, G., Solis-Escalante, T., Ortner, R., Linortner, P., and Müller-Putz, G. R., Self-paced operation of an SSVEP-based orthosis with and without an imagery-based brain switch: a feasibility study towards a hybrid BCI. IEEE Trans. Neural Syst. Rehabil. Eng.. 18:409–414, 2010. doi:10.1109/TNSRE.2010.2040837.

    Article  PubMed  Google Scholar 

  19. Qin, L., and He, B., A wavelet-based time–frequency analysis approach for classification of motor imagery for brain–computer interface applications. J. Neural Eng. 2:65–72, 2005. doi:10.1088/1741-2560/2/4/001.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., and Arnaldi, B., A review of classification algorithms for EEG-based brain computer interface. J. Neural Eng. 4:1–24, 2007. doi:10.1088/1741-2560/4/2/R01.

    Article  Google Scholar 

  21. Khare, V., Santhosh, J., Anand, S., and Bhatia, M., Classification of five mental tasks based on two methods of neural network. Int. J. Comput. Sci. Inf. Secur. 8:86–92, 2010.

    Google Scholar 

  22. Broomhead, D. S., and Lowe, D., Multivariable functional interpolation and adaptive network. Complex Syst. 2:321–355, 1988.

  23. Pierce, J. R., An introduction to information theory: symbols. Signals and Noise, Dover, New York, 1980.

  24. Muller-Putz, G. R., Kaiser, V., Solis-Escalante, T., and Pfurtscheller, G., Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Med. Biol. Eng. 48:229–233, 2010. doi: 10.1007/s11517-009-0572-7.

    Article  Google Scholar 

  25. Yamawaki, N., Wilke, C., and Liu, Z., An enhanced time-frequency-spatial approach for motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 14:250–254, 2006. doi: 10.1109/TNSRE.2006.875567.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hazrati, M. K., and Erfanian, A., An online EEG-based brain–computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med. Eng. Phys. 32:730–739, 2010. doi: 10.1016/j.medengphy.2010.04.016.

    Article  PubMed  Google Scholar 

  27. Muller, K. R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and Blankertz, B., Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167:82–90, 2008. doi: 10.1016/j.jneumeth.2007.09.022.

  28. Lehtonen, J., Jylänki, P., Kauhanen, L., and Sams, M., Online classification of single EEG trials during finger movement. IEEE Trans. Biomed. Eng. 55:713–720, 2008. doi: 10.1109/TBME.2007.912653 .

Download references

Acknowledgments

This research was partly supported by Ministry of Science and Technology in Taiwan, under grants MOST 103-2221-E-009-035-MY2, and MOST 104-2221-E-305-006. This research was also partly supported by Southern Taiwan Science Park Bureau, Tainan, Taiwan, under the grant CZ-12-12-22-103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Shyh Lin.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, BS., Pan, JS., Chu, TY. et al. Development of a Wearable Motor-Imagery-Based Brain–Computer Interface. J Med Syst 40, 71 (2016). https://doi.org/10.1007/s10916-015-0429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0429-6

Keywords

Navigation