Skip to main content

Advertisement

Log in

An Intelligent Phonocardiography for Automated Screening of Pediatric Heart Diseases

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presents a robust device for automated screening of pediatric heart diseases based on our unique processing method in murmur characterization; the Arash-Band method. The present study modifies the Arash-Band method and employs output of the modified method in conjunction with the two other original techniques to extract indicative feature vectors for the screening. The extracted feature vectors are classified by using the support vector machine method. Results show that the proposed modifications significantly enhances performance of the Arash-Band in terms of the both accuracy and sensitivity as the corresponding effect sizes are sufficiently large. The proposed algorithm has been incorporated into an Android-based tablet to constitute an intelligent phonocardiogram with the automatic screening capability. In order to obtain confidence interval of the accuracy and sensitivity, an inferable statistical test is applied on our database containing the phonocardiogram signals recorded from 263 of the referrals to a hospital. The expected value of the accuracy/sensitivity is estimated to be 87.45 % / 87.29 % with a 95 % confidence interval of (80.19 % – 92.47 %) / (76.01 % – 95.78 %) exhibiting superior performance than a pediatric cardiologist who relies on conventional or even computer-assisted auscultation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlstrom, C., Höglund, K., Hult, P., Häggström, J., Kvart, C., and Ask, P., Assessing aortic stenosis using sample entropy of the phonocardiographic signal in dogs. IEEE Trans Biomed Eng 55:2107–2109, 2008.

    Article  Google Scholar 

  2. Biancaniello, T., Innocent murmures. Circulation 111:e20—e22, 2005.

    Article  PubMed  Google Scholar 

  3. Cho, G. Y., Lee, S. J., and Lee, T. R., An optimized compression algorithm for real-time ecg data transmission in wireless network of medical information systems. J Med Syst 39:161, 2015.

    Article  PubMed  Google Scholar 

  4. Cortes, C., and Vapnik, V., Support vector networks. Mach Learn 20:273–297, 1995.

    Google Scholar 

  5. de Vos, J. P., and Blanckenberg, M. M., Automated pediatric auscultation. IEEE Trans Biomed Eng 54:244–252, 2007.

    Article  PubMed  Google Scholar 

  6. Debjais, F., Durand, L. G., Ouo, Z., and Guarlo, R., Time-frequency analysis of heart murmurs. part ii: optimization of time-frequency representations and performance evaluation. Med Biol Eng Comput 35:480–485, 1997.

    Article  Google Scholar 

  7. DeGroff, C. G., Bhatikar, S., Hertzberg, J., Shandas, R., Valdes-Cruz, L., and Mahajan, R. L., Artificial neural network–based method of screening heart murmurs in children. Circulation 103:2711–2716, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Dutoit, T., and Marques, F., Applied Signal Processing. New York: Springer Science, 2009.

    Book  Google Scholar 

  9. Efron, B., and Tibshirani R. J., An Introduction to the Bootstrap. NY: CHAPMAN & HALL/CRC, 1993.

    Book  Google Scholar 

  10. Gavrovska, A., Bogdanovic, V., Reljina, I., and Reljin, B., Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine wigner–ville distribution and haar wavelet lifting. Comput Meth Prog Biomed 113:515–528, 2014.

    Article  Google Scholar 

  11. Gharehbaghi, A., Dutoit, T., Sepehri, A., Hult, P., and Ask, P., An automatic tool for pediatric heart sounds segmentation. In: Proc. Computing in Cardiology, Vol. 38, pp. 37–40 2011.

  12. Gharehbaghi, A., Dutoit, T., Ask, P., and Sörnmo, L., Detection of systolic ejection click using time growing neural network. Med Eng Phys 36:477–483, 2014.

    Article  PubMed  Google Scholar 

  13. Gharehbaghi, A., Ask, P., and Babic, A., A pattern recognition framework for detecting dynamic changes on cyclic time series. Pattern Recogn 48(3):696–708, 2015a.

    Article  Google Scholar 

  14. Gharehbaghi, A., Ask, P., Lindén, M., and Babic, A., A novel model for screening aortic stenosis using phonocardiogram. In: 16th Nordic-Baltic Conference on Biomedical Engineering, Springer International Publishing, IFMBE Proceedings, Vol. 48, pp. 48–51, 2015b.

  15. Gharehbaghi, A., Ask, P., Nylander, E., Janeröt-Sjoberg, B., Ekman, I., Lindén, M., and Babic, A., A hybrid model for diagnosing sever aortic stenosis in asymptomatic patients using phonocardiogram. In: World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, Springer International Publishing, IFMBE Proceedings, Vol. 51, pp. 1006–1009, 2015c.

  16. Gharehbaghi, A., Borga, M., Sjöberg, B. J., and Ask, P., A novel method for discrimination between innocent and pathological heart murmurs. Med Eng Phys 37(7):674–682, 2015d.

    Article  PubMed  Google Scholar 

  17. Gharehbaghi, A., Dutoit, T., Sepehri, A. A., Kocharian, A., and Lindén, M., A novel method for screening children with isolated bicuspid aortic valve. Cardiovasc Eng Technol 7:1–11, 2015e.

    Google Scholar 

  18. Gharehbaghi, A., Ekman, I., Ask, P., Nylander, E., and Janerot-Sjoberg, B., Assessment of aortic valve stenosis severity using intelligent phonocardiography. Int J Cardiol 198:58–60, 2015f.

    Article  PubMed  Google Scholar 

  19. Gharehbaghi, A., Sepehri, A. A., Kocharian, A., and Lindén, M., An intelligent method for discrimination between aortic and pulmonary stenosis using phonocardiogram. In: World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, IFMBE Proceedings, Vol. 51, pp. 1010–1013, 2015g.

  20. Hollander, M., and Wolfe, D. A., Nonparametric Statistical Methods. NJ: John Wiley, 1999.

    Google Scholar 

  21. Jacob, C. STATISTICAL POWER ANALYSIS for the BEHAVIORAL SCIENCES. NJ: Lawrence Erlbaum Associates, 1988.

    Google Scholar 

  22. Jarque, C. M., and Bera, A. K., A test for normality of observations and regression residuals. Int Stat Rev 55:163–170, 1987.

    Article  Google Scholar 

  23. Kecman, V. Learning and Soft Computing: Support Vector Machine, Neural Networks and Fuzzy Logic Models. Cambridge: MIT Press, 2002.

    Google Scholar 

  24. Kumar, V., Cotran, R. S., Robbins, S. L., Basic Pathology: W.B. Saunders Company, 1997.

  25. Martis, R. J., Krishnan, M. M. R., Chakraborty, C., Pal, S., Sarkar, D., Mandana, K. M., and Ray, A. K., Automated screening of arrhythmia using wavelet based machine learning techniques. J Med Syst 36:677–688, 2012.

    Article  PubMed  Google Scholar 

  26. Martín, J. A. C., Martiínez-Peérez, B., de la Torre-Diíez, I., and López-Coronado, M., Economic impact assessment from the use of a mobile app for the self-management of heart diseases by patients with heart failure in a spanish region. J Med Syst 38:96, 2014.

    Article  Google Scholar 

  27. Çomak, E., and Arslan, A., A biomedical decision support system using ls-svm classifier with an efficient and new parameter regularization procedure for diagnosis of heart valve diseases. J Med Syst 36:549–556, 2012.

    Article  PubMed  Google Scholar 

  28. O’Toole, J. D., Reddy, P. S., Curtiss, E. I., and Shaver, J. A., The mechanism of splitting of the second heart sound in atrial septal defect. Circulation 56:1047–1053, 1977.

    Article  PubMed  Google Scholar 

  29. Pollonini, L., Rajan, N. O., Xu, S., Madala, S., and Dacso, C. C., A novel handheld device for use in remote patient monitoring of heart failure patients–design and preliminary validation on healthy subjects. J Med Syst 36:653–659, 2012.

    Article  PubMed  Google Scholar 

  30. Quiceno-Manrique, A. F., Godino-Llorente, J. I., Blanco-Velasco, M., and Castellanos-Dominguez, G., Selection of dynamic features based on time–frequency representations for heart murmur detection from phonocardiographic signals. Ann Biomed Eng 38:118–137, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Rakovic, P., Sejdic, E., Stankovic, L. J., and Jiang, J., Time-frequency signal processing approaches with applications to heart sound analysis. In: Proc. Comput. Cardiol., Vol. 33, pp. 197–200, 2006.

  32. Sekiya, T., Watanable, A., and Saito, M., The use of modified constellation graph method for computer-aided classification of congenital heart diseases. IEEE Trans Biomed Eng 38:814–820, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Sepehri, A. A., Hancq, J., Dutoit, T., Gharehbaghi, A., Kocharian, A., and Kiani, A., Computerized screening of children congenital heart diseases. Comput Meth Prog Biomed 92:186–192, 2008.

    Article  Google Scholar 

  34. Sepehri, A. A., Gharehbaghi, A., Dutoit, T., Kocharian, A., and Kiani, A., A novel method for pediatric heart sound segmentation without using the ECG. Comput Meth Prog Biomed 99:43–48, 2010.

    Article  Google Scholar 

  35. Sörnmo, L., and Laguna, P., Bioelectrical Signal Processing in Cardiac and Neurological Applications. Amsterdam: Elsevier (Academic Press), 2005.

    Google Scholar 

  36. kyung Suh, M., Chen, C. A., Woodbridge, J., Tu, M. K., Jung In Kim, A. N., Evangelista, L. S., and Sarrafzadeh, M., A remote patient monitoring system for congestive heart failure. J Med Syst 35:1165–1179, 2011.

    Article  Google Scholar 

  37. Tilkian, A. G., Understanding Heart Sounds and Murmurs. Philadelphia: W.B. Sanders Company, 1984.

    Google Scholar 

  38. Tseng, K. C., Hsu, C. L., and Chuang, Y. H., Designing an intelligent health monitoring system and exploring user acceptance for the elderly. J Med Syst 37:9967, 2013.

    Article  PubMed  Google Scholar 

  39. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., and Kwak, K. S., A comprehensive survey of wireless body area networks. J Med Syst 36:1065–1094, 2012.

    Article  PubMed  Google Scholar 

  40. Watrous, R. L., Thompson, W. R., and Ackerman, S. J., The impact of computer-assisted auscultation on physician referrals of asymptomatic patient with heart murmurs. Clin Cardiol 31:79–83, 2008.

    Article  PubMed  Google Scholar 

  41. Wood, J. C., and Barry, D. T., Time-frequency analysis of the first heart sound. IEEE Eng Med Biol Mag 95:144–151, 1995.

    Article  Google Scholar 

  42. Zang, X., Durand, L. G., Senhadji, L., Lee, H. C., and Coatrieux, J. L., Time–frequency scaling transformation of the phonocardiogram based of the matching pursuit method. IEEE Trans Biomed Eng 45:972–979, 1998.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the help of Professor Thierry Dutoit and Professor Juel Hancq from the Faculty of Polytechnic, Mons University, Belgium. This study was supported by CAPIS biomedical research and development department, Mons, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Gharehbaghi.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, A.A., Kocharian, A., Janani, A. et al. An Intelligent Phonocardiography for Automated Screening of Pediatric Heart Diseases. J Med Syst 40, 16 (2016). https://doi.org/10.1007/s10916-015-0359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0359-3

Keywords

Navigation