Journal of Scientific Computing

, Volume 49, Issue 3, pp 311–331

Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems

Article

DOI: 10.1007/s10915-011-9463-9

Cite this article as:
Bi, C. & Ginting, V. J Sci Comput (2011) 49: 311. doi:10.1007/s10915-011-9463-9

Abstract

In this paper, we consider the symmetric interior penalty discontinuous Galerkin (SIPG) method with piecewise polynomials of degree r≥1 for a class of quasi-linear elliptic problems in Ω⊂ℝ2. We propose a two-grid approximation for the SIPG method which can be thought of as a type of linearization of the nonlinear system using a solution from a coarse finite element space. With this technique, solving a quasi-linear elliptic problem on the fine finite element space is reduced into solving a linear problem on the fine finite element space and solving the quasi-linear elliptic problem on a coarse space. Convergence estimates in a broken H1-norm are derived to justify the efficiency of the proposed two-grid algorithm. Numerical experiments are provided to confirm our theoretical findings. As a byproduct of the technique used in the analysis, we derive the optimal pointwise error estimates of the SIPG method for the quasi-linear elliptic problems in ℝd,d=2,3 and use it to establish the convergence of the two-grid method for problems in Ω⊂ℝ3.

Keywords

Discontinuous Galerkin methodSIPGQuasi-linear ellipticTwo-grid algorithmSuperconvergence

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsYantai UniversityShandongChina
  2. 2.Department of MathematicsUniversity of WyomingLaramieUSA