Skip to main content
Log in

Finite Element-Based Level Set Methods for Higher Order Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we shall discuss the numerical simulation of geometric flows by level set methods. Main examples under considerations are higher order flows, such as surface diffusion and Willmore flow as well as variants of them with more complicated surface energies. Such problems find various applications, e.g. in materials science (thin film growth, grain boundary motion), biophysics (membrane shapes), and computer graphics (surface smoothing and restoration).

We shall use spatial discretizations by finite element methods and semi-implicit time stepping based on local variational principles, which allows to maintain dissipation properties of the flows by the discretization. In order to compensate for the missing maximum principle, which is indeed a major hurdle for the application of level set methods to higher order flows, we employ frequent redistancing of the level set function.

Finally we also discuss the solution of the arising discretized linear systems in each time step and some particular advantages of the finite element approach such as the variational formulation which allows to handle the higher order and various anisotropies efficiently and the possibility of local adaptivity around the zero level set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almgren, F., Taylor, J.E.: Optimal geometry in equilibrium and growth. Fractals 3, 713–723 (1996)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savare, G.: Metric Gradient Flows. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  3. www.caesar.de/amdis.html

  4. Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203, 321–343 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett, J.W., Blowey, J.F.: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comp. 68, 487–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  7. Bornemann, F., Rasch, C.: Finite-Element discretization of static Hamilton-Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9, 57–69 (2006)

    Article  MathSciNet  Google Scholar 

  8. Burger, M.: Numerical simulation of anisotropic surface diffusion with curvature-dependent energy. J. Comp. Phys. 203, 602–625 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burger, M., Hausser, F., Stöcker, C., Voigt, A.: A level set approach to anisotropic flows with curvature regularization. J. Comp. Phys. 225, 183–205 (2007)

    Article  MATH  Google Scholar 

  10. Carter, W.C., Cahn, J.W., Taylor, J.E.: Variational methods for microstructural evolution. JOM 49(12), 30–36 (1998)

    Article  Google Scholar 

  11. Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6, 195–218 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Clarenz, U., Haußer, F., Rumpf, M., Voigt, A., Weikard, U.: On level set formulations for anisotropic fourth order geometric evolution problems. In: Voigt, A. (ed.) Multiscale Modeling in Epitaxial Growth, ISNM 149, pp. 227–237. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  13. Deckelnick, K., Dziuk, G.: Error estimates for a semi implicit fully discrete finite element scheme for mean curvature flow of graphs. Interfaces Free Bound. 2, 341–359 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow. Numer. Math. 91, 423–452 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deckelnick, K., Dziuk, G., Elliott, C.M.: Fully discrete semi-implicit second order splitting for anisotropic surface diffusion of graphs. Isaac Newton Institute, Cambridge (2003). Preprint

    Google Scholar 

  16. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. (2005), 139–232

  17. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries. Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  18. DiCarlo, A., Gurtin, M., Podio-Guidugli, P.: A regularized equation for anisotropic motion by curvature. SIAM J. Appl. Math. 52, 1111–1119 (1992)

    Article  MathSciNet  Google Scholar 

  19. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6, 361–378 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Fried, E., Gurtin, M.E.: A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy. Adv. Appl. Mech. 40, 1–177 (2004)

    Article  Google Scholar 

  21. Glasner, K.: A diffuse interface approach to Hele-Shaw flow. Nonlinearity 16, 49–66 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Haußer, F., Voigt, A.: A discrete scheme for regularized anisotropic surface diffusion, a sixth order geometric evolution equation. Interfaces Free Bound. 7, 1–17 (2005)

    MathSciNet  Google Scholar 

  23. Haußer, F., Voigt, A.: A discrete scheme for regularized anisotropic curve shortening flow. Appl. Math. Lett. 19, 691–698 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Haußer, F., Voigt, A.: A discrete scheme for parametric anisotropic surface diffusion. J. Sci. Comput. 30, 223–235 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Herring, C.: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951)

    Article  MATH  Google Scholar 

  26. Gurtin, M.E., Jabbour, M.E.: Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Rat. Mech. Anal. 163, 171–208 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  28. Osher, S.J., Fedkiw, R.P.: The Level Set Method and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  29. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rätz, A., Voigt, A.: Higher order regularization of anisotropic geometric evolution equations in three dimensions. J. Comput. Theor. Nanosci. 3, 543–560 (2006)

    Google Scholar 

  31. Rusu, R.E.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7, 229–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comp. 19, 439–456 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stöcker, C.: Level set methods for higher order evolution laws. PhD-thesis, Mathematics Department, Technische Universität Dresden (2008). http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1205350171405-81971

  34. Stöcker, C., Vey, S., Voigt, A.: AMDiS—Adaptive multidimensional simulations: composite finite elements and signed distance functions. WSEAS Trans. Circ. Syst. 4, 111–116 (2005)

    Google Scholar 

  35. Vey, S., Voigt, A.: AMDiS—adaptive multidimensional simulations: Object oriented software concepts for scientific computing. WSEAS Trans. Syst. 3, 1564–159 (2004)

    Google Scholar 

  36. Vey, S., Voigt, A.: AMDiS—adaptive multidimensional simulations. Comp. Vis. Sci. 10, 57–67 (2007)

    Article  MathSciNet  Google Scholar 

  37. Vey, S., Voigt, A.: Adaptive full domain covering meshes for parallel finit element computations. Comput. 81, 813–820 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, M., Stöcker, C. & Voigt, A. Finite Element-Based Level Set Methods for Higher Order Flows. J Sci Comput 35, 77–98 (2008). https://doi.org/10.1007/s10915-008-9204-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9204-x

Keywords

Navigation