1.

Audit, E., Charrier, P., Chièze, J.-P., and Dubroca, B. (2002). A radiation hydrodynamics scheme valid from the transport to the diffusion limit, preprint astro-ph 0206281.

2.

Batten P., Clarke N., Lambert C., Causon D.M. (1997). On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18 (6): 1553–1570

MATHCrossRefMathSciNet3.

Berthon, C. Numerical approximations of the 10-moment Gaussian closure. *Math. Comp.* Posted on June 6, 2006, PII S 0025–5718(06)01860-6 (to appear in print).

4.

Berthon, C., Charrier, P., and Dubroca, B. An asymptotic preserving relaxation scheme for a moment model of the radiative transfer, C. R. Acad. Sci. Paris, Ser. I, submitted.

5.

Bouchut, F. (2004). Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources. Frontiers in Mathematics series, Birkhäuser.

6.

Buet, C., and Cordier, S. (2004). Asymptotic Preserving Scheme and Numerical Methods for Radiative Hydrodynamic Models. 951–956 C. R. *Acad. Sci.* Paris, Tome 338, Série I.

7.

Buet C., Després B. (2004) Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spectrosc. Radiat. Transf. 85 (3–4): 385–418

CrossRef8.

Buet C., Després B. (2006). Asymptotic preserving and positive schemes for radiation hydrodynamics, J. Comput. Phys. 215, 717–740

MATHCrossRefMathSciNet9.

Charrier, P., Dubroca, B., Duffa G., and Turpault, R. (2003). Multigroup model for flows during atmospheric hypersonic re-entry. *Proceedings of International Workshop on Radiation of High Temperature Gases in Atmospheric Entry*, pp. 103–110. Lisbonne, Portugal.

10.

Dubroca, B., Feugeas, J.-L. (1999). Hiérarchie de Modéles Aux Moments Pour le Transfert Radiatif. Série I. pp. 915–920. C. R. *Acad. Sci.* Paris, Tome 329.

11.

Gentile N.A. (2001). Implicit Monte-carlo diffusion-an acceleration method for Monte Carlo time-dependent radiative transfer simulations. J. Comput. Phys. 172, 543–571

MATHCrossRef12.

Godlewsky, E., and Raviart, P.A. (1995). Hyperbolic Systems of Conservations Laws, Applied Mathematical Sciences, Vol 118, Springer Berlin.

13.

Gosse, L., and Toscani, G. (2002). Asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. pp. 337–342. C. R. *Acad. Sci.* Paris, tome 334, Série I.

14.

Harten A., Lax P.D., Van Leer B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1): 35–61

MATHCrossRefMathSciNet15.

Ingram D.M., Causon D.M., Mingham C.G. (2003). Developments in Cartesian cut cell methods. Math. Comput. Simulat. 61, 561–572

MATHCrossRefMathSciNet16.

Jin S., Xin Z. (1995). The relaxation scheme for systems of conservation laws in arbitrary space dimension. Comm. Pure Appl. Math. 45, 235–276

CrossRefMathSciNet17.

Levermore C.D. (1996). Moment closure hierarchies for kinetic theory. J. Stati. Phys. 83, 1021–1065

MATHCrossRefMathSciNet18.

Mihalas D., Mihalas G.W. (1984). Foundation of Radiation Hydrodynamics. Oxford University Press, Oxford

19.

Pomraning G.C. (1973). The Equations of Radiation Hydrodynamics, Sciences Application. Pergamon Press, Oxford

20.

Ripoll J.-F. (2004). An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows. J. Quant. Spectrosc. Radiat. Trans. 83(3–4): 493–517

CrossRef21.

Ripoll J.-F., Dubroca B., Audit E. (2002). A factored operator method for solving coupled radiation-hydrodynamics models. Trans. Theory. Stat. Phys. 31, 531–557

MATHCrossRefMathSciNet22.

Toro E.F. (1999). Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin.

MATH23.

Toro E.F., Spruce M., Spear W. (1994). Restoration of the contact surface in the HLL Riemann solver. Shock waves, 4, 25–34

MATHCrossRef24.

Turpault, R. (2002). Numerical Solution of Radiative Transfer Equation with Finite Volumes. *Proceedings of Finite Volume for Complex Applications III*, pp. 695–702, France.

25.

Turpault R. (2005). A consistent multigroup model for radiative transfer and its underlying mean opacity. J. Quant. Spectrosc. Radiat. Transfer 94, 357–371

CrossRef