Skip to main content

Advertisement

Log in

The Endocranial Morphology of the Plio-Pleistocene Bone-Cracking Hyena Pliocrocuta perrieri: Behavioral Implications

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The internal cranial morphology of the bone-cracking hyena Pliocrocuta perrieri (Carnivora, Hyaenidae) is described based on three crania from the late Pliocene and early Pleistocene of the Iberian Peninsula. The shape and size of the inner cranial cavities (with emphasis on encephalization and relative regional brain volumes) are compared with those of extant hyaenids with the aid of computed tomography techniques—which had not been previously used to study the brain morphology of any extinct bone-cracking hyena. Our results indicate that the frontal sinuses of P. perrieri are caudally extended and overlap the brain cavity, as in other extinct and extant bone-cracking hyaenids. In turn, the brain morphology and sulcal pattern of P. perrieri are more similar to those of Hyaena hyaena and Parahyaena brunnea than to those of Crocuta crocuta among extant bone-cracking hyaenids. Our results further indicate that Pliocrocuta is clearly less encephalized than the highly-social Crocuta, and displays an anterior cerebrum relatively smaller than in all extant bone-cracking hyenas (indicating the possession of a poorly-developed frontal cortex). These facts might suggest that P. perrieri possessed less developed cognitive abilities than Crocuta for processing the information associated with complex social behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adolphs R (2001) The neurobiology of social cognition. Curr Opin Neurobiol 11: 231–239. doi: 10.1016/S0959-4388(00)00202-6

    Article  CAS  PubMed  Google Scholar 

  • Agustí J, Oms O (2001) On the age of the last hipparionine faunas in western Europe. C R Acad Sci Paris 332: 291–297. doi: 10.1016/S1251-8050(01)01523-3

    Google Scholar 

  • Alba DM (2010) Cognitive inferences in fossil apes (Primates: Hominoidea): does encephalization reflect intelligence? J Anthropol Sci 88: 11–48

    PubMed  Google Scholar 

  • Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7: 268–277. doi: 10.1038/nrn1884

    Article  CAS  PubMed  Google Scholar 

  • Anadón P, Utrilla R, Vázquez A, Martín-Rubio M, Rodriguez-Lázaro J, Robles F (2009) Paleoenviromental evolution of the Pliocene Villarroya lake, northern Spain, from stable isotopes and trace-element geochemistry of ostracods and mollusks. J Paleolimnol 39: 339–419. doi: 10.1007/s10933-007-9121-2

    Google Scholar 

  • Andersson J (2005) Were there pack-hunting canids in the Tertiary, and how can we know? Paleobiology 31: 56–72

    Article  Google Scholar 

  • Antón M, Turner A, Salesa MJ, Morales J (2006) A complete skull of Chasmaporthetes lunensis (Carnivora, Hyaenidae) from the Spanish Pliocene site of La Puebla de Valverde (Teruel). Estudios Geol 62: 375–388. doi: 10.3989/egeol.0662132

    Article  Google Scholar 

  • Arribas Herrera A, Bernad García J (1994) Catálogo de mamíferos pliocenos del yacimiento de Villarroya (La Rioja), en la colección del Museo Geominero. Bol Geol Min 105: 236–248

    Google Scholar 

  • Arsznov BM, Lundrigan BL, Holekamp KE, Sakai ST (2010) Sex and the frontal cortex: a developmental CT study in the spotted hyena. Brain Behav Evol 76: 185–97. doi: 10.1159/000321317

    Article  PubMed  Google Scholar 

  • Barton RA, Dunbar RIM (1997) Evolution of the social brain. In: Whiten A, Byrne R (eds) Machiavellian Inteligence II. Cambridge Unversity Press, Cambridge, pp 240–263

    Chapter  Google Scholar 

  • Boaz NT, Ciochon RL, Xu Q, Liu J (2000) Large mammalian carnivores as a taphonomic factor in the bone accumulation at Zhoukoudian. Acta Anthropol Sinica 19: 224–234

    Google Scholar 

  • Byrne R, Whiten A (1988) Machiavellian Intelligence. Oxford University Press, Oxford

    Google Scholar 

  • Cooper SM, Holekamp KE, Smale L (1999) A seasonal feast: long-term analysis of feeding behavior in the spotted hyaena Crocuta crocuta (Erxbelen). Afr J Ecol 1: 178–180

    Google Scholar 

  • Crusafont Pairó M, Hartenberger JL, Heintz E (1964) Un nouveau gisement de Mammifères fossiles d’âge villafranchien à La Puebla de Valverde (Province de Teruel, Espagne). C R Hebd Séances Acad Sci 258: 2869–2871

    Google Scholar 

  • Dockner M (2006) Comparisons of Crocuta crocuta crocuta and Crocuta crocuta spelaea through computer tomography. M.S. Dissertation, University of Vienna

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6: 178–190. doi: 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8

    Article  Google Scholar 

  • Dunbar RIM (2003) The social brain: mind, language, and society in evolutionary perspective. Annu Rev Anthropol 32: 163–181. doi: 10.1146/annurev.anthro.32.061002.093158

    Article  Google Scholar 

  • Dunbar RIM, Bever J (1998) Neocortex size predicts group size in carnivores and some insectivores. Ethology 104: 695–708. doi: 10.1111/j.1439-0310.1998.tb00103.x

    Article  Google Scholar 

  • Dunbar RIM, Shultz S (2007a) Understanding primate brain evolution. Phil Trans R Soc B 362: 649–658. doi: 10.1098/rstb.2006.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunbar RIM, Shultz S (2007b) Evolution in the social brain. Science 317: 1344–1347. doi: 10.1126/science.1145463

    Article  CAS  PubMed  Google Scholar 

  • Eloff FC (1964) On the predatory habits of lions and hyaenas. Koedoe 7: 105–112

    Article  Google Scholar 

  • Finarelli JA, Flynn JJ (2009) Brain-size evolution and sociality in Carnivora. Proc Natl Acad Sci USA 106: 345–349. doi: 10.1073/pnas.0901780106

    Article  Google Scholar 

  • Gaudry A (1862–1867) Animaux Fossiles du Mont Leberon. F. Savy, Paris, pp 475

  • Gautier F, Heintz E (1974) Le gisement villafranchien de La Puebla de Valverde (Province de Teruel, Espagne). Bull Mus Natl Hist Nat 36: 113–133

    Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41: 587–640. doi: 10.1111/j.1469-185X.1966.tb01624.x

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (1975) Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib Primatol 5: 244–292

    CAS  PubMed  Google Scholar 

  • Holekamp KE, Sakai ST, Lundrigan BL (2007a) Social intelligence in the spotted hyena (Crocuta crocuta). Phil Trans R Soc Lond B 362: 523–538. doi: 10.1098/rstb.2006.1993

    Article  Google Scholar 

  • Holekamp KE, Sakai ST, Lundrigan BL (2007b) The spotted hyena (Crocuta crocuta) as a model system for study of the evolution of intelligence. J Mammal 88: 545–554. doi: 10.1644/06-MAMM-S-361R1.1

    Article  Google Scholar 

  • Howell FG, Petter G (1980) The Pachycrocuta and Hyaena lineages (Plio-Pleistocene and extant species of the Hyaenidae). Their relationships with Miocene ictitheres: Palhyaena and Hyaenictitherium. Geobios 13: 579–623. doi: 10.1016/S0016-6995(80)80004-0

    Article  Google Scholar 

  • Jerison HJ (1973) Evolution of the Brain and Intelligence. Academic Press, New York

    Google Scholar 

  • Jiménez García S, Martín de Jesús S, Jiménez Fuentes E (1999) Primeros resultados de la excavación “Villarroya 88-89”. Stvdia Geológica Salmanticensia 35: 41–56

    Google Scholar 

  • Joeckel RM (1998) Unique frontal sinuses in fossil and living Hyaenidae (Mammalia, Carnivora): description and interpretation. J Vertebr Paleontol 18: 627–639. doi: 10.1080/02724634.1998.10011089

    Article  Google Scholar 

  • Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73: 79–123. doi: 10.1111/j.1469-185X.1997.tb00026.x

    Article  CAS  PubMed  Google Scholar 

  • Kruuk H (1972) The Spotted Hyena: Study of Predation and Social Behavior. Chicago University Press, Chicago

    Google Scholar 

  • Kruuk H (1976) Feeding and social behavior of the striped hyaena (Hyaena hyaena Desmarest). E Afr Wildl J 4: 91–111

    Article  Google Scholar 

  • Kurtén B (1968) Pleistocene Mammals of Europe. Weidenfeld and Nicolson, London

  • Martin RD, Barbour AD (1989) Aspects of line-fitting in bivariate allometric analyses. Folia Primatol 53: 65–41. doi: 10.1159/000156409

    Article  CAS  PubMed  Google Scholar 

  • Mills MGL (1990) Kalahari Hyaenas: The Comparative Behavioral Ecology of Two Species. Unwin Hyman, London

  • Palmqvist P, Martínez-Navarro B, Pérez-Claros JA, Torregrosa V, Figueirido B (2011) The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quaternary Internatl 243: 61–79. doi: 10.1016/j.quaint.2010.12.035

    Article  Google Scholar 

  • Paulli S (1900) Über die Pneumaticität des Schädels bei den Säugethieren. III. Über die Morphologie des Siebbeins und die der Pneumaticität bei den Insectivoren, Hyracoideen, Chiroptera, Carnivoren, Pinnipedien, Edentaten, Prosimiern und Primaten. Gegenbaurs Morphol Jahrb 28: 483–564

    Google Scholar 

  • Pérez-Barbería FJ, Shultz S, Dunbar RIM (2007) Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61: 2811–2821. doi: 10.1111/j.1558-5646.2007.00229.x

    Article  PubMed  Google Scholar 

  • Pilgrim GE (1932) The fossil Carnivora of India. Paleontol Indica 18: 1–232

    Google Scholar 

  • Radinsky L (1971) An example of parallelism in carnivore brain evolution. Evolution 25: 518–522

    Article  Google Scholar 

  • Radinsky L (1975) Evolution of the felid brain. Brain Behav Evol 11: 214–253. doi: 10.1159/000123636

    Article  CAS  PubMed  Google Scholar 

  • Radinsky L (1977) Brains of early carnivores. Paleobiology 3: 333–349

    Google Scholar 

  • Sakai ST, Arsznov BM, Lundrigan BL, Holekamp KE (2011) Brain size and social complexity: a computed tomography study in Hyaenidae. Brain Behav Evol 77: 91–104. doi: 10.1159/000323849

    Article  PubMed  Google Scholar 

  • Schlosser M (1890) Die Aven, Lemuren, Chiropteren, Insectivoren, Marsupialier, Creodonten und Carnivoren des europäischen Tertiärs. III. Beitr Paläontol Geol Osterr Ung 8: 1–107

    Google Scholar 

  • Shultz S, Dunbar R (2010) Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc Natl Acad Sci USA 107: 21582–21586. doi: 10.1073/pnas.1005246107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinusía C, Pueyo EL, Azanza B, Pocoví A (2004) Datación magnetoestratigráfica del yacimiento paleontológico de Puebla de Valverde (Teruel). GeoTemas 6: 339–342

    Google Scholar 

  • Smith RJ (1984) Determination of relative size: the “criterion of subtraction” problem in allometry. J Theor Biol 108: 131–142. doi: 10.1016/S0022-5193(84)80174-5

    Article  CAS  PubMed  Google Scholar 

  • Swanson EM, Holekamp KE, Lundrigan BL, Arsznov BM, Sakai ST (2012) Multiple determinants of whole and regional brain volume among terrestrial carnivorans. PLoS ONE 7: e38447. doi: 10.1371/journal.pone.0038447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanner JB, Dumont ER, Sakai ST, Lundrigan BL, Holejamp KE (2008) Of arcs and vaults: the biomechanics of bone-cracking in spotted hyenas (Crocuta crocuta). Biol J Linn Soc 95: 246–255. doi: 10.1111/j.1095-8312.2008.01052.x

    Article  Google Scholar 

  • Thenius E (1966) Zur Stammegeschichte der Hyänen (Carnivora, Mammalia). Z Säugetierk 31: 293–300

    Google Scholar 

  • Tilson RL, Henschel JR (1986) Spatial arrangement of spotted hyaena groups in a desert envoiroment, Namibia. Afr J Ecol 4: 173–180

    Article  Google Scholar 

  • Tseng ZJ, Antón M, Salesa MJ (2011) The evolution of the bone-cracking model in carnivorans: cranial functional morphology of the Plio-Pleistocene cursorial hyaenid Chasmaporthetes lunensis (Mammalia: Carnivora). Paleobiology 37: 140–156. doi: 10.1666/09045.1

    Article  Google Scholar 

  • Turner A, Antón M (1996) The giant hyaena Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae). Geobios 29: 455–468. doi: 10.1016/S0016-6995(96)80005-2

    Article  Google Scholar 

  • Turner A, Antón M, Werdelin L (2008) Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. Geobios 41: 677–687. doi: 10.1016/j.geobios.2008.01.001

    Article  Google Scholar 

  • Van Valkenburgh B (1990) Skeletal and dental prefictors of body mass in carnivores. In: Damuth J, MacFadden B (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, pp 181–205

    Google Scholar 

  • Van Valkenburgh B, Sacco T, Wang X (2003) Pack hunting in Miocene borophagine dogs: evidence from craniodental morphology and body size. Bull Am Mus Nat His 13: 147–162

  • Vinuesa V, Madurell-Malapeira J, Ansón M, Alba DM (2014) New cranial remains of Pliocrocuta perrieri (Carnivora, Hyaenidae) from the Villafranchian of the Iberian Peninsula. Boll Soc Paleont Ital 53: 39–47

    Google Scholar 

  • Wagner AP (2006) Behavioral ecology of the striped hyaena (Hyaena hyaena). Ph.D. Dissertation, Montana State University

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81: 259–291. doi: 10.1017/S1464793106007007

    Article  PubMed  Google Scholar 

  • Werdelin L (1989) Constraint and adaption in the bone-cracking canid Osteoborus (Mammalia: Canidae). Paleobiology 15: 387–401

    Google Scholar 

  • Werdelin L, Solounias N (1991) The Hyaenidae: taxonomy, systematics and evolution. Fossils Strata 30: 1–104

    Google Scholar 

  • Werdelin L, Solounias N (1996) The evolutionary history of hyenas in Europe and western Asia during the Miocene. In: Bernor RL, Fahlbusch R, Mittmann HW (eds) The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp 290–306

    Google Scholar 

  • Werdelin L, Turner A (1996a) The fossil and living Hyaenidae of Africa: present status. In: Stewart KM, Seymour KL (eds) Palaeoecology and Palaeoenvironments of Late Cenozoic Mammals. University of Toronto Press, Toronto, pp 637–659

    Google Scholar 

  • Werdelin L, Turner A (1996b) Turnover in the guild of larger carnivores in Eurasia across the Miocene–Pliocene boundary. Acta Zool Crac 39: 585–592

    Google Scholar 

Download references

Acknowledgments

We are particularly grateful to Sergio Llácer for assistance with image processing. We also thank the Mútua de Terrassa for access to CT-scanning facilities, E. Gilissen and W. Wendelen for allowing us to study comparison material under their care, S. Sakai and L. Werdelin for sending relevant literature cited in this paper, M. Pina for assistance with ANCOVA comparisons, and T. Rowe and J. Maisano (University of Texas and Digimorph website) for providing to us the CT-scans of extant hyaenids. This paper greatlly benefited from the careful reading and thoughtful comments by the Editor J. R. Wible and two anonymous reviewers on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Madurell-Malapeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinuesa, V., Madurell-Malapeira, J., Fortuny, J. et al. The Endocranial Morphology of the Plio-Pleistocene Bone-Cracking Hyena Pliocrocuta perrieri: Behavioral Implications. J Mammal Evol 22, 421–434 (2015). https://doi.org/10.1007/s10914-015-9287-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-015-9287-8

Keywords

Navigation