Skip to main content

Advertisement

Log in

Ecomorphology of Mammalian Fossil Lineages: Identifying Morphotypes in a Case Study of Endemic South American Ungulates

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The notoungulates are one major clade of extinct native South American ungulate mammals. Several notoungulate morphotypes have been proposed by comparison with mammals from other large land masses, representing instances of convergent evolution in continental isolation. As with other entirely fossil lineages, the reconstruction of their functional biology is challenging, one major obstacle being the fragmentary and distorted nature of the fossil remains for which application of conventional quantitative data analysis techniques is compromised. Here we explored the patterns in morphospace of representatives of all notoungulate families on the basis of the qualitative scoring of 31 cranial characters that provided a basic description of shape and an approximation to sensory and mechanical functions of the skull. We calculated pairwise distances between all taxa with an index that proportionally corrected overall similarity by both character number and dissimilarities. The distances were used to generate a morphospace with a multivariate technique, Principal Coordinates Analysis. We recovered a tight group of basal Paleocene-Eocene notoungulates and a scattered group of Oligocene and Neogene forms. Lines drawn in that space connecting successive sister terminals clearly showed a departure from basal genera toward four diverging, previously proposed morphotypes, namely rabbit-, large-rodent-, small-horse-, and rhino-like forms. An extensive analysis identified the character basis of these morphotypes. Mapping additional information such as body size and degree of hypsodonty effectively aided in the interpretation of notoungulate morphofunctional evolution. We briefly discuss the utility of the qualitative morphospace as a tool for exploring the ecomorphology of fossil lineages and the evolutionary implications of this reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala F, Giannini NP (2000) Gomphodont cynodonts of the Chañares Formation: the analysis of an ontogenetic sequence. J Vertebr Paleontol 20:501–506

    Article  Google Scholar 

  • Ameghino F (1885) Nuevos restos de mamíferos fósiles oligocenos recogidos por el Profesor Pedro Scalabrini y pertenecientes al Museo Provincial de la Ciudad de Paraná. Bol Acad Cienc Córdoba 8:5–207

    Google Scholar 

  • Ameghino F (1887a) Enumeración sistemática de las especies de mamíferos fósiles coleccionados por Carlos Ameghino en los terrenos eocenos de Patagonia austral y depositados en el Museo de La Plata. Bol Mus La Plata 1:1–26

    Google Scholar 

  • Ameghino F (1887b) Observaciones generales sobre el orden de mamíferos estinguidos Sud-Americanos llamados toxodontes (Toxodontia) y sinopsis de los géneros y especies hasta ahora conocidos. Anales Mus La Plata (special issue, 1936):1–66

  • Ameghino F (1897) Les mammifères crétacés de l’Argentine. Deuxième contribution à la connaissance de la faune mammalogique des couches à Pyrotherium. Bol Inst Geog Argent 18:406–521

    Google Scholar 

  • Ameghino F (1901) Notices préliminaires sur des ongulés nouveaux des terrains Crétacés de Patagonie. Bol Acad Cienc Córdoba 16:349–426

    Google Scholar 

  • Ameghino F (1902) Première contribution à la connaissance de la faune mammalogique des couches á Colpodon. Bol Acad Cienc Córdoba 17:71–138

    Google Scholar 

  • Antoine P-O, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Gismondi RS (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc B 279:1319–1326

    Article  PubMed Central  PubMed  Google Scholar 

  • Billet G (2010) New observations on the skull of Pyrotherium (Pyrotheria, Mammalia) and new phylogenetic hypotheses on South American ungulates. J Mammal Evol 17:21–59

    Google Scholar 

  • Billet G (2011) Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J Syst Palaeontol 9(4): 481–497

    Google Scholar 

  • Billet G, Blondel C, Muizon C de (2009) Dental microwear analysis of notoungulates (Mammalia) from Salla (late Oligocene, Bolivia) and discussion on their precocious hypsodonty. Palaeogeogr Palaeoclimatol Palaeoecol 274:114–124

    Google Scholar 

  • Billet G, Muizon C de, Mamani Quispe B (2008) Late Oligocene mesotheriids (Mammalia, Notoungulata) from Salla and Lacayani (Bolivia): implications for basal mesotheriid phylogeny and distribution. Zool J Linn Soc 152:153–200

    Google Scholar 

  • Billet G, Patterson B, Muizon C de (2009) Craniodental anatomy of late Oligocene archaeohyracids (Notoungulata, Mammalia) from Bolivia and Argentina and new phylogenetic hypotheses. Zool J Linn Soc 155:458–509

    Google Scholar 

  • Bond M (1981) Un nuevo Oldfieldthomasiidae (Mammalia, Notoungulata) del Eoceno inferior (Fm Lumbrera, Grupo Salta) del NW Argentino. Anais II Congreso Latino-Americano de Paleontologia (Porto Alegre) 2:521–536

    Google Scholar 

  • Bond M (1986) Los ungulados fósiles de Argentina: evolución y paleoambientes. 4º Congreso argentino de Paleontología y Bioestratigrafía (Mendoza) Actas 2:173–185

  • Bond M, López G (1993) El primer Notohippidae (Mammalia, Notoungulata) de la Formación Lumbrera (Grupo Salta) del Noroeste argentino. Consideraciones sobre la sistemática de la familia Notohippidae. Ameghiniana 30:59–68

    Google Scholar 

  • Bond M, López GM (1995) Los mamíferos de la Formación Casa Grande (Eoceno) de la Provincia de Jujuy, Argentina. Ameghiniana 32:301–309

    Google Scholar 

  • Bond M, López GM, Reguero MA, Scillato-Yané GJ, Vucetich MG (1998) Los mamíferos de la Formación Fray Bentos (Edad Mamífero Deseadense, Oligoceno Superior?) de las provincias de Corrientes y Entre Ríos, Argentina. Asociación Paleontológica Argentina Publicación especial no 5. Paleógeno de América del Sur y de la península Antártica:41–50

  • Bond M, Vucetich MG, Pascual R (1984) Un nuevo Notoungulata de la Formación Lumbrera (Eoceno) de la Provincia de Salta, Argentina. I Jornadas Argentinas de Paleontología de Vertebrados (La Plata) Actas:20

  • Burmeister CV (1888) Relación de un viaje a la Gobernación del Chubut. Anales Mus Buenos Aires 3:175–252

    Google Scholar 

  • Cassini GH, Flores DA, Vizcaíno SF (2012) Postnatal ontogenetic scaling of Nesodontine (Notoungulata, Toxodontidae) cranial morphology. Acta Zool (Stockh) 93:249–259

    Article  Google Scholar 

  • Cassini GH, Mendoza M, Vizcaíno SF, Bargo MS (2011) Inferring habitat and feeding behaviour of early Miocene notoungulates from Patagonia. Lethaia 44:153–165

    Article  Google Scholar 

  • Cassini GH, Vizcaíno SF (2012) An approach to the biomechanics of the masticatory apparatus of early Miocene (Santacrucian Age) South American ungulates (Astrapotheria, Litopterna, and Notoungulata): moment arm estimation based on 3D landmarks. J Mammal Evol 19:9–25

    Article  Google Scholar 

  • Cerdeño E, Bond M (1998) Taxonomic revision and phylogeny of Paedotherium and Tremacyllus (Pachyrukhinae, Hegetotheriidae, Notoungulata) from the late Miocene to the Pleistocene of Argentina. J Vertebr Paleontol 18:799–811

    Article  Google Scholar 

  • Chaffee RG (1952) The Deseadan vertebrate fauna of the Scaritt Pocket, Patagonia. Bull Am Mus Nat Hist 98:503–562

    Google Scholar 

  • Cifelli RL (1983) The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am Mus Novitates 2772:1–49

    Google Scholar 

  • Cifelli RL (1993) The phylogeny of the native South American ungulates. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Volume 2: Placentals. Springer Verlag, New York, pp 195–216

    Chapter  Google Scholar 

  • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions 7:271–287

    Article  Google Scholar 

  • Croft DA, Bond M, Flynn JJ, Reguero MA, Wyss AR (2003) Large archaeohyracids (Typotheria, Notoungulata) from central Chile and Patagonia including a revision of Archaeotypotherium. Fieldiana (Geol) NS 49:1–38

    Google Scholar 

  • Croft DA, Flynn JJ, Wyss AR (2008) The Tinguiririca Fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arquivos do Museu Nacional 66:191–211

    Google Scholar 

  • Croft DA, Weinstein D (2008) The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeogr Palaeoclimatol Palaeoecol 269:103–114

    Google Scholar 

  • de Paula Couto C (1954) On a notostylopid from the Paleocene of Itaboraí, Brazil. Am Mus Novitates 3:77–86

    Google Scholar 

  • de Paula Couto C (1983) Geochronology and paleontology of the basin of Tremenbé-Taubaté, State of São Paulo. Iheringia 8:5–31

    Google Scholar 

  • Deraco MV, Powell JE, López GM (2008) Primer leontínido (Mammalia, Notoungulata) de la Formación Lumbrera (Subgrupo Santa Bárbara, Grupo Salta – Paleógeno) del noroeste argentino. Ameghiniana 45:83–91

    Google Scholar 

  • Elissamburu A (2004) Morphometric and morphofunctional analysis of the apendicular skeleton of Paedotherium (Mammalia, Notoungulata). Ameghiniana 41:363–380

    Google Scholar 

  • Elissamburu A (2010) Estudio biomecánico y morfofuncional del esqueleto apendicular de Homalodotherium Flower 1873 (Mammalia, Notoungulata). Ameghiniana 47:25–43

    Article  Google Scholar 

  • Elissamburu A (2012) Estimación de la masa corporal en géneros del Orden Notoungulata. Estud Geol (Madr) 68:91-111

    Article  Google Scholar 

  • Findley JS, Black HL (1983) Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology 64:625–630

    Article  Google Scholar 

  • Flynn JJ, Croft DA, Charrier R, Hérail G, Wyss AR (2002b) The first Cenozoioc mammal fauna from the Chilean Altiplano. J Vertebr Paleontol 22:200–206

    Article  Google Scholar 

  • Flynn JJ, Novacek MJ, Dodson HE, Frassinetti D, McKenna MC, Norell MA, Sears KE, Swisher CC (2002a) A new fossil mammal assemblage from the southern Chilean Andes: implications for geology, geochronology, and tectonics. J S Am Earth Sci 15:285–302

    Article  Google Scholar 

  • Flynn JJ, Wyss AR (1998) Recent advances in South American mammalian paleontology. Trends Ecol Evol 13:449–454

    Article  CAS  PubMed  Google Scholar 

  • Flynn JJ, Wyss AR, Croft DA, Charrier R (2003) The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal ‘Age.’ Paleogeogr Paleoclimatol Palaeoecol 195:229–259

    Google Scholar 

  • Gabbert SL (2004) The basicranial and posterior cranial anatomy of the families of the Toxodontia. Bull Am Mus Nat Hist 285:177–190

    Article  Google Scholar 

  • García-López DA (2011) Basicranial osteology of Colbertia lumbrerense Bond, 1981 (Mammalia: Notoungulata). Ameghiniana 48:3–12

    Article  Google Scholar 

  • García-López DA, Powell JE (2009) Un nuevo Oldfieldthomasiidae (Mammalia: Notoungulata) del Paleógeno de la provincia de Salta, Argentina. Ameghiniana 46:153–164

    Google Scholar 

  • García-López DA, Powell JE (2011) Griphotherion peiranoi, gen. et sp. nov., a new Eocene Notoungulata (Mammalia, Meridiungulata) from northwestern Argentina. J Vertebr Paleontol 31:1117–1130

    Article  Google Scholar 

  • Giannini NG, Gunnell GF, Habersetzer J, Simmons NB (2012) Early evolution of body size in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules, and Morphology. Cambridge University Press, Cambridge, pp 530–555.

    Chapter  Google Scholar 

  • Hair Jr. JF, Anderson RE, Tatham RL, Black WC (1995) Multivariate Data Analysis. Fourth Edition. Prentice Hall, New York, 745 pp

  • Hitz RB, Flynn JJ, Wyss AR (2006) New basal Interatheriidae (Typotheria, Notoungulata, Mammalia) from the Paleogene of Central Chile. Am Mus Novitates 3520:1–32

    Article  Google Scholar 

  • Janis CM (1986) An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In: Russell DE, Santoro JP, Sigogneau-Russell D (eds) Teeth Revisited: Proceedings of the VII International Symposium on Dental Morphology, Paris 1986. Mém Mus Natl Hist Nat Paris (série C) 53:367–387

  • Kay RF, Madden RH, Vucetich MG, Carlini AA, Mazzoni MM, Re GH, Heizler M, Sandeman H (1999) Revised geochronology of the Casamayoran South American Land Mammal Age: climatic and biotic implications. Proc Natl Acad Sci USA 96:13235–13240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leisler B, Winkler H (1985) Ecomorphology. Current Ornithology 2:155–186

    Article  Google Scholar 

  • López GM (1995) Suniodon catamarcensis gen. et sp. nov. y otros Oldfieldthomasiidae (Notoungulata, Typotheria) del Eoceno de Antofagasta de la Sierra, Catamarca, Argentina. 4° Congreso Argentino de Paleontología y Bioestratigrafía (Trelew) Actas:167–172

  • López GM (1997) Paleogene faunal assemblage from Antofagasta de la Sierra (Catamarca province, Argentina). Paleovertebrata 26:61–81

    Google Scholar 

  • López GM (2008) Los ungulados de la Formación Divisadero Largo (Eoceno Inferior?) de la provincia de Mendoza, Argentina: sistemática y consideraciones bioestratigráficas. Unpublished PhD dissertation, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, 415 pp

  • López GM, Bond M (1995) Un nuevo Notopithecinae (Notoungulata, Typotheria) del Terciario Inferior de la Puna argentina. Stvdia Geol Salmanticensia 31:87–99

    Google Scholar 

  • MacFadden BJ (2000) Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu Rev Ecol Syst 31:33–59

    Article  Google Scholar 

  • Madden RH (1997) A new toxodontid notoungulate. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, D.C., pp 335–354

  • Marani H, Dozo MT (2008) El cráneo más completo de Eurygenium latirostris Ameghino, 1895 (Mammalia, Notoungulata), un Notohippidae del Deseadense (Oligoceno Tardío) de la Patagonia, Argentina. Ameghiniana 45:619–626

    Google Scholar 

  • Marshall L, Muizon C de, Sigé B (1983) Perutherium altiplanense, un notongulé du Crétacé Supérieur du Pérou. Paleovertebrata 13:145–155

    Google Scholar 

  • McKenna MC, Bell S (1997) Classification of Mammals Above the Species Level. Columbia University Press, New York

    Google Scholar 

  • Mendoza M, Palmqvist P (2007) Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? J Zool 2:1–9

    Google Scholar 

  • Morales MM, Giannini NP (2010) Morphofunctional patterns in Neotropical felids: species coexistence and historical assembly. Biol J Linn Soc 100:711–724

    Article  Google Scholar 

  • Morales MM, Giannini NP (2013) Ecomorphology of the African felid ensemble: the role of the skull and postcranium in determining species segregation and assembling history. J Evol Biol doi: 10.1111/jeb.12108

    PubMed  Google Scholar 

  • Pascual R, Bond M, Vucetich MG (1981) El Subgrupo Santa Bárbara (Grupo Salta) y sus vertebrados, cronología, paleoambientes y paleobiogeografía. VIII Congreso Geológico Argentino (San Luis) Actas 3:743–758

  • Pascual R, Ortega Hinojosa E, Gondar D, Tonni EP (1966) Las edades del Cenozoico mamalifero de la Argentina, com especial atención a aquéllas del territorio bonarense. An Com Invest Cient 6: 165–193

    Google Scholar 

  • Pascual R, Ortiz Jaureguizar E, Prado JL (1996) Land mammals: paradigm for Cenozoic South American geobiotic evolution. Münchner Geowiss Abh (A) 30:265–319

    Google Scholar 

  • Pascual R, Vucetich MR, Fernández J (1978) Los primeros mamíferos (Notoungulata, Henricosborniidae) de la Formación Mealla (Grupo Salta, Subgrupo Santa Bárbara). Sus implicancias filogenéticos, taxonómicas y cronológicas. Ameghiniana 15:367–390

    Google Scholar 

  • Patterson B (1934) Cranial characters of Homalodotherium. Field Mus Nat Hist Geol Ser 6:113–117

    Google Scholar 

  • Paula Coulo C (1952) Fossil mammals from the beginning of the Cenozoic in Brazil. Notoungulata. Am Mus Novitates 1568:1–16

    Google Scholar 

  • Prothero DR, Berggren WA (1992) Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, 568 pp

    Book  Google Scholar 

  • R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available from: < http://www.Rproject.org >

  • Reguero MA, Candela AM, Cassini GH (2010) Hypsodonty and body size in rodent-like notoungulates. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp. 358–367

    Google Scholar 

  • Reguero MA, Croft DC, López GM, Alonso RN (2008) Eocene archaeohyracids (Mammalia: Notoungulata: Hegetotheria) from the Puna, northwest Argentina. J S Am Earth Sci 26:225–233

    Article  Google Scholar 

  • Reguero MA, Dozo MT, Cerdeño E (2007) A poorly known rodentlike mammal (Pachyrukhinae, Hegetotheriidae, Notoungulata) from the Deseadan (late Oligocene) of Argentina. Paleoecology, biogeography, and radiation of the rodentlike ungulates in South America. J Paleontol 81:1301–1307

    Article  Google Scholar 

  • Reguero MA, Prevosti FJ (2010) Rodent-like notoungulates (Typotheria) from Gran Barranca, Chubut Province, Argentina: phylogeny and systematic. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, New York, pp 152–169

    Google Scholar 

  • Rogers JS, Tanimoto TT (1960) A computer program for classifying plants. Science 132:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (1990) NTSYS-pc: Numerical taxonomy and multivariate analysis system v. 1.6. Applied Biostatistics Inc., New York

    Google Scholar 

  • Roth S (1903) Los ungulados sudamericanos. Anales Mus La Plata 5:1–36

    Google Scholar 

  • Scarano AC, Carlini AA, Illius AW (2011) Interatheriidae (Typotheria; Notoungulata), body size and paleoecology characterization. Mammal Biol 76:109–114

    Google Scholar 

  • Scott KM (1985) Allometric trends and allometry in bovid postcranial proportions. Bull Am Mus Nat Hist 179:197–288

    Google Scholar 

  • Scott WB (1912) Mammalia of the Santa Cruz Beds. Vol. 6. Part 2–3. Toxodontia. Report Princeton Univ Exped Patagonia 6:111–300

    Google Scholar 

  • Shockey BJ (1997) Two new notoungulates (family Notohippidae) from the Salla Beds of Bolivia (Deseadan: late Oligocene): systematics and functional morphology. J Vertebr Paleontol 17:584–599

    Article  Google Scholar 

  • Shockey BJ, Croft DA, Anaya F (2007) Analysis of function in the absence of extant functional homologues: a case study using mesotheriid notoungulates (Mammalia). Paleobiology 33:227–247

    Article  Google Scholar 

  • Sidlauskas BL (2008) Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:3135–3156

    Article  PubMed  Google Scholar 

  • Sigé B, Sempere T, Butler R, Marshall LG, Crochet JY (2004) Age and stratigraphic reassessment of the fossil-bearing Laguna Umayo red mudstone unit, SE Peru, from regional stratigraphy, fossil record, and paleomagnetism. Geobios 37:771–794

    Article  Google Scholar 

  • Simpson GG (1948) The beginning of the age of mammals in South America. Part I. Bull Am Mus Nat Hist 91:1–232

    Google Scholar 

  • Simpson GG (1967) The beginning of the age of mammals in South America. Part II. Bull Am Mus Nat Hist 137:1–259

    Google Scholar 

  • Simpson GG (1980) Splendid Isolation: the Curious History of South American Mammals. Yale University Press, New Haven

    Google Scholar 

  • Simpson GG, Minoprio JL, Patterson B (1962) The mammalian fauna of the Divisadero Largo Formation, Mendoza, Argentina. Bull Mus Comp Zool 127:237–303

    Google Scholar 

  • Slater GJ, Van Valkenburgh B (2009) Allometry and performance: the evolution of skull form and function in felids. J Evol Biol 22:2278–2287

    Article  CAS  PubMed  Google Scholar 

  • Solounias N, Moelleken SMC (1993) Dietary adaptation of some extinct ruminants determined by premaxillary shape. J Mammal 74:1059–1071

    Article  Google Scholar 

  • Soria MF (1989) El primer Notoungulata de la Formación Río Loro (Paleoceno medio), Provincia de Tucumán, República Argentina. Ameghiniana 26:145–151

    Google Scholar 

  • Soria MF, Ferraz de Alvarenga HM (1989) Nuevos restos de mamíferos de la Cuenca de Taubate, estado de São Paulo, Brasil. An Acad Bras Cienc 61:157–175

    Google Scholar 

  • ter Braak CFJ (1995) Ordination. In: Jongman RHG, ter Braak CFJ, van Tongeren OFR (eds) Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, The Netherlands, pp 91–173

  • Tonni EP, Alberdi MT, Prado JL, Bargo MS, Cione AL (1992) Changes on mammal assemblagesin the pampean region (Argentina) and their relation with the Plio-Pleistocene boundary. Paleogeogr Paleoclimatol Palaoecol 95:179–194

    Google Scholar 

  • Townsend KE, Croft DA (2008) Diets of notoungulates from the Santa Cruz Formation, Argentina: new evidence from enamel microwear. J Vertebr Paleontol 28:217–230

    Article  Google Scholar 

  • Ubilla M, Perea D, Bond M (1999) Two new records of notoungulates (Isotemnidae; Oldfieldthomasiidae n.g., n. sp.) from Fray Bentos Fm. (Deseadan Salma, Oligocene) in the Santa Lucia Basin, Uruguay. Congreso Internacional Evolución Neotropical del Cenozoico (La Paz, 1999) Resúmenes:43

  • Van Valkenburgh B (1987) Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol 7:162–182

    Article  Google Scholar 

  • Van Valkenburgh B (1994) Ecomorphological analysis of fossil veertebrates and their paleocommunities. In: Wainwright PC, Reilly SM (eds) Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp 140–166

    Google Scholar 

  • Vucetich MG (1980) Un nuevo Notostylopidae (Mammalia, Notoungulata) proveniente de la Formación Lumbrera (Grupo Salta) del noroeste argentino. Ameghiniana 17:363–372

    Google Scholar 

  • Vucetich MG, Bond M (1982) Los primeros Isotemnidae (Mammalia, Notoungulata) registrados en la Formación Lumbrera (Grupo Salta), del noroeste argentino. Ameghiniana 19:7–18

    Google Scholar 

  • Wainwright PC, Reilly SM (1994) Introduction. In: Wainwright PC, Reilly SM (eds) Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp 1–9

    Google Scholar 

  • Webb SD (1991) Ecogeography and the Great American Interchange. Paleobiology 17:266–280

    Google Scholar 

Download references

Acknowledgments

We thank the people in charge of collections who allowed access to the specimens under their care: Marcelo Reguero (MLP, La Plata), Alejandro Kramarz (MACN, Buenos Aires), Alejandro Dondas (MMMP, Mar del Plata), and Jaime Powell (PVL, Tucumán). Virginia Deraco graciously provided photographs of Leontinia and Scarrittia. We thank CONICET and PICT 2008-1798 granted to NPG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norberto Pedro Giannini.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 958 kb)

Appendices

Appendix 1 Specimens Examined in the Present Study

Institutional abbreviations: AMNH: American Museum of Natural History, New York; MACN: Museo Argentino de Ciencias naturales Bernardino Rivadavia, Buenos Aires, Argentina; MLP: Museo de La Plata, Buenos Aires, Argentina; MMMP: Museo Municipal de Historia Natural “Lorenzo Scaglia”, Mar del Plata, Argentina; PVL: Colección Paleontología de Vertebrados Lillo, Tucumán, Argentina.

Specimen list (alphabetical):

Archaeohyrax MACN-A 52-617; Boreastylops MLP 78-V-6-5, PVL 4261; Brachystephanus MLP 68-X-17-2; Campanorco MLP 79-VI-16-1, PVL 6225; Colbertia PVL 4183, PVL 4184 (1-2), PVL 4293, PVL 4300, PVL 4608, PVL 6218, PVL 6227; Coquenia PVL 5853, PVL 6397; Griphotherion PVL 5903; Hegetotherium PVL 91; Interatherium MACN-A 3444; Leontinia MACN-A 52-573 (photographs provided by Virginia Deraco); Mesotherium MACN 2036, MACN 8690; Notopithecus MACN-A 10790, MACN-A 10787; Notostylops MACN-A 10499, MACN-A 10466; Oldfieldthomasia MACN-A 10376, MACN-A 10772; Pachyrukhos PVL 84, MACN-A 3313; Paedotherium MACN-A 1184, MACN-PV 1081, MACN-PV 7214, MACN-PV 10178, MMMP 226-S, MMMP 698-S, MMMP 710-S, PVL 503, PVL 2272, PVL 2274, PVL 2377, PVL 3386; Pampahippus PVL S-4192; Protypotherium MACN-A 3882, MACN-A 3920, MLP 84-III-9-12; Scarrittia AMNH 29581, AMNH 29583, AMNH 29584 (photographs provided by Virginia Deraco); Simpsonotus MLP 73-VII-3-11; Toxodon MLP 12-II-26, PVL uncatalogued specimen; Trachytherus MACN-A 52-490.

Appendix 2 Commented List of Characters Used in this Study

See Fig. 1 for illustration of characters.

  1. 1.

    Basicranial angle: less than 180° (0); or approximately 180° (1); or greater than 180° (2). The basicranial angle is defined as the angle between the horizontal plane of the basicranium with respect to the rostrum of the skull. The former is defined by the ventral aspect of the presphenoid, basisphenoid, and basioccipital, and the latter by the upper alveolar line, specifically the plane including the points at the base of left and right canines and last molars. The angle is assessed on a lateral view of the skull.

  2. 2.

    Zygomatic plate: absent (0); or incipient (1); or well developed (2). The term “zygomatic plate” refers here to a lateral widening of the anterior root of the zygomatic arch, associated with a flat or concave smooth ventral area for the origin of enlarged anterior tracts of the masseter muscle. The skulls with incipient plates present a moderately widened ventral edge of the anterior root of the arch and a comparatively small flattened area. In taxa with a well-developed plate (state 2), the anterior root of the arch is greatly widened and a large, concave, and smooth area is present.

  3. 3.

    External auditory meatus orientation: nearly horizontal (0); or dorsolateral (1). In the groups considered here, the external auditory meatus is a lateral tubular projection of the ectotympanic. Orientation of the tube is independent of the length of the meatus. In state 1, the tube extends laterally, dorsally, and usually posteriorly, reaching the level of the skull roof.

  4. 4.

    Development of the epitympanic sinus (squamosal): absent or inconspicuous (0); or well developed (1); or prominent (2). The epitympanic sinus of the squamosal is a singular feature of notoungulates and pyrotheres (see Billet 2010). This structure is a hollow space developed inside the squamosal bone. The sinus is located at the posterolateral corner of the skull, and connected to the tympanic cavity ventrally. This feature is present in all notoungulates (Cifelli 1993) and in Pyrotherium; however, in some Paleogene genera the internal space of the squamosal is not associated with an external inflation and the sinus is not evident in intact skulls (state 0). Thus, the first state also contemplates the possibility that the sinus is absent. Nevertheless, the presence of the sinus was confirmed in some genera assigned 0, such as Colbertia, even in the absence of the external inflation (see García-López 2011).

  5. 5.

    Development of the tympanic bulla: small (0); or well developed, prominent (1). All notoungulates exhibit a tympanic bulla that is part of the ectotympanic bone (see Gabbert 2004). In the first state, the bulla is small with respect to the area of the basicranium in ventral view, and not particularly prominent ventrally. In the second state, the bulla is a large, balloon-like structure, usually occupying a large surface of the basicranial area in ventral view.

  6. 6.

    Height of the rostrum: low (0); or high (1). This character is considered as the relation between the length of the rostrum in lateral view (from the rostral edge of the orbit to the tip of the premaxilla) and the height of the rostrum immediately rostral to the orbit. In skulls with a high rostrum, both measures are similar. In a low rostrum, the first measure is clearly greater than the second.

  7. 7.

    Length of the rostrum: short (0); or long (1). This character is measured as the proportion of the length of the palate (from the edge of the choanae to the rostral edge of the premaxilla), relative to the total skull length. A long rostrum is one comprising more than 50 % of the total length of the skull in ventral view.

  8. 8.

    Shape of the mandibular (= glenoid) fossa: shallow, rostral border not well defined (0); or transversal, rostral border well defined (1). The first state of this character is referred to a shallow fossa where width is subequal to the length and where rostral limit is not marked by a well-developed process on the ventral edge of the zygomatic arch. This is related to the shape of the articular process of the mandible, and, therefore, this last feature was not included in the analysis to avoid redundancies.

  9. 9.

    Shape of the anterior palate (on the premaxilla): semicircular (0); or subrectangular (1); or Pyrotherium-like (2). Most genera show state 0, with a roughly semicircular dental arcade. Some genera (e.g., Toxodon) exhibit a truncated rostrum with a transversally straight arcade (state 1). The condition observed in Pyrotherium is of irregular shape due to the great development of the incisor alveoli (state 2). This character has been used to assess dietary adaptations of extinct ruminants (Solounias and Moelleken 1993).

  10. 10.

    Shape of the upper toothrow: straight (0); or bowed, toothrow medially concave (1). State 0 applies to either parallel or divergent toothrows as the character refers to one side of the upper dental arcade.

  11. 11.

    Posterior width of the palate: very narrow (0); or narrow (1); or wide (2). State 0 refers to the singular condition observed in Pyrotherium, which presents an unusual narrow palate. State 1 is scored when the posterior width of the palate represents less than two times the buccolingual length of the molars. In state 2 the posterior width exceeds that measure.

  12. 12.

    Position of the nasal aperture: terminal (0); or slightly retracted (1); or retracted (2). The lateral edges of the nares and the rostral end of the nasals can be located at the level of the first incisors (state 0), slightly behind this position (state 1), or located at the level of the postcanine teeth (state 2, only present in Pyrotherium).

  13. 13.

    Diastema: absent (0); or present, small (1); or present, well developed (2). A diastema is any space in the dental arcade between the canines and cheekteeth, existing as a consequence of evolutionary loss of dental pieces or separation between them (usually associated with some reduction of the teeth).

  14. 14.

    Postorbital constriction: narrow (0); or wide (1). The confluence of the temporal lines just posterior to the postorbital processes may determinate a strong postorbital constriction (state 0).

  15. 15.

    Temporal fossa: small (0); or large (1). The extent of the temporal fossa is determined dorsally by the temporal lines and the sagittal crest, which mark the perimeter of the area for the origin of the temporal muscle in the skull. Small fossae (state 0) are shallow and retracted to the surface of the parietal, with sagittal crests weak or absent. In large fossae (state 1), the temporal lines begin immediately posterior to the postorbital processes and converge in a strong sagittal crest that joins the lambdoid or nuchal crest.

  16. 16.

    Development of the postorbital process: small (0); or large (1). A small postorbital process (state 0) is either a tubercle-like structure with a limited base, or a sharp, needle-like process. In either case the tip of the process does not reach far into the orbit. A large process (state 1) exhibits either a wide base, or it is long, thus approaching the zygomatic arch.

  17. 17.

    Length of the upper molar row relative to upper premolar row: similar length (0); or molar row longer (1). This difference could be due to a lesser mesiodistal development of the premolars (being all present) or to the evolutionary loss of one or more of the anterior premolars.

  18. 18.

    Development of the jugular (= paracondylar) process in occipital view: short, not exceeding the extent of the tympanic bulla ventrally (0); or long, greatly exceeding the tympanic bulla ventrally (1).

  19. 19.

    Development of the zygomatic arch in lateral view: slender (0); or intermediate (1); or robust (2). Slender arches (state 0) are thin bars of bone. Arches are scored as robust (state 0) when its depth is comparable to the height of the orbit.

  20. 20.

    Orientation of the mandibular symphysis: sub-vertical (0); or procumbent (1). In the procumbent state, the mental surface of the symphysis forms an angle of 45° or less with the horizontal (ventral edge of the mandible).

  21. 21.

    Position of the articular process (= mandibular condyle) relative to the lower molar row: slightly dorsal to the molar row level (0); or much higher than the molar row level (1). In all the studied genera the articular process is located above the level of the lower molar row. The character is scored as 0 when this difference in height is less than twice the height of lower molars. In Campanorco the mandible is unknown. We scored this taxon on the basis of the relative position of the glenoid fossa with respect to the occlusal surface of the upper molars.

  22. 22.

    Mandibular depth at the level of the lower premolars: shallow (0); or deep (1). This character is scored as 1 when the depth of the mandibular body is greater than three times the heigh of the lower premolar crowns.

  23. 23.

    Development of the angular process: not expanded (0); or expanded (1). In most Paleogene genera the angular process is a rounded prominence on the mandibular ramus, which is more developed caudally than ventrally. Expanded processes (state 1) describe a wide, continuous curve from the articular process (= mandibular condyle) to the rostral end of the masseteric line, on the ventral edge of the mandibular body.

  24. 24.

    Anterior extent of the insertion of the masseteric muscle on the mandible: at the level of the distal end of the lower molar row (0); or anterior to the level of the caudal end of the lower molar row (1).

  25. 25.

    Height of the coronoid process: low, not well developed (0); or high, well developed (1). The top of the coronoid process is the area of insertion of the temporal muscle, and its size is associated with the development of this element. Low processes do not exceed dorsally the height of the articular process (state 0). High processes (state 1) greatly exceed the height of the articular process.

  26. 26.

    Size of upper incisors: I1 similar to I2 (0); or I1 larger than I2 (1). In this character only the size of the first upper incisor is considered and not its morphology. The character is scored as state 1 when the mesiodistal length or the crown of the I1 greatly exceed that of I2.

  27. 27.

    Aspect of the occlusal surface of the upper molars at average condition of wear: dominated by the ectoloph (0); or roughly flat (1). The cusps of the ectoloph (paracone and metacone) are usually well developed in most notoungulates. This character considered the height of these cusps. In the state 0, the paracone and the metacone are greatly exceed in height the protocone and the hypocone, which are the other two main cusps of the notoungulate upper molar; so the ectoloph is the most prominent structure of the occlusal surface. In state 1, height is comparable across all the cusps, and the occlusal surface appears roughly flat.

  28. 28.

    Upper canine: absent (0); or moderately developed (1); or hypertrophied (2). The upper canine can be absent (state 0) or present with two degrees of development as compared with the size of upper incisors. The canine can be of comparable size relative to the incisors (state 1) or be significantly larger than the incisors (state 2; present in only one of the included genera, Thomashuxleya).

  29. 29.

    Morphology of the upper molars: protoloph and metaloph moderately developed (0); or wide lophs (1); or occlusal surface without fossettes (2); or bilophodont (3). Although this character is easily influenced by wear, the development of the lophs can be discriminated by other features, like the orientation of the walls of the lophs. State 0 refers to slender lophs and state 1 to strong lophs, which occupy a large occlusal area. State 2 refers to a continuous occlusal surface, without fossettes. State 3 is proper of Pyrotherium, which exhibits two lophs likely homologous to a protoloph and metaloph (see Billet 2010).

  30. 30.

    Differentiation of the upper cheekteeth: heterodont, premolars and molar well differentiated (0); or virtually homodont (1). Despite the different degrees of molarization in notoungulate premolars, most representatives of this group bear well-differentiated premolars and molars. Pyrotherium was scored 1 given that all but the first cheektooth are bilophodont with just minor differences in size across the row.

  31. 31.

    Skull size: small (0); or medium (1); or large (2). Assessment of skull sizes in this study is only approximate and relied on visual comparisons of skulls rather than on metric estimates given the degree of fragmentation and deformation of several key representatives of notoungulate families.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannini, N.P., García-López, D.A. Ecomorphology of Mammalian Fossil Lineages: Identifying Morphotypes in a Case Study of Endemic South American Ungulates. J Mammal Evol 21, 195–212 (2014). https://doi.org/10.1007/s10914-013-9233-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-013-9233-6

Keywords

Navigation