, Volume 18, Issue 1, pp 33-55
Date: 30 Oct 2010

Potential Bark and Fruit Browsing as Revealed by Stereomicrowear Analysis of the Peculiar Clawed Herbivores Known as Chalicotheres (Perissodactyla, Chalicotherioidea)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This low magnification stereomicrowear study samples a broad range of chalicotheres (Perissodactyla, Chalicotherioidea), including basal chalicotheres and the two chalicotheriid subfamilies Schizotheriinae and Chalicotheriinae, primarily including species from North America and Europe, but also some from Asia. The schizotheriines Moropus, Tylocephalonyx, and Metaschizotherium and the chalicotheriines Anisodon and Chalicotherium are best represented. Paleodiets are interpreted via discriminant analysis, using comparison of microwear variables from fossil chalicothere teeth with those from a database of extant ungulates with known diets. The results suggest that all of the chalicotheres in the study were browsers, with no evidence of significant grass consumption. Basal chalicotheres, like basal equids, seem to have been standard fruit-dominated browsers. Stereomicrowear agrees with mesowear results by Schulz et al. (2007) and Schulz and Fahlke (2009) for Metaschizotherium bavaricum, Metaschizotherium fraasi, Anisodon grande, and Chalicotherium goldfussi in showing a highly abrasive aspect to the diet. In these species, hard food objects such as fibrous fruits, seeds, pits, and nuts may have abraded the teeth (based on high pit counts, the presence of large puncture pits, and many individuals with coarse to hypercoarse scratches). Anisodon grande and C. goldfussi, despite their relatively short, brachydont teeth, show the highest degree of abrasion within the studied sample. Moropus and Tylocephalonyx from North America show somewhat different but also abrasive microwear; in these taxa the resistant foods may have been twigs and bark (large pits common, but gouging more prevalent than puncture pits). A preliminary comparison of stereomicrowear on DP4, the deciduous upper fourth premolar, with that on molars suggests that juveniles consumed similar foods as adults but without the most abrasive elements. Some important methodological differences regarding the scoring of microwear features by different low-magnification microwear methodologies are discussed.