Skip to main content

Advertisement

Log in

Targeting Inhibitors of Apoptosis Proteins (IAPs) For New Breast Cancer Therapeutics

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Apoptosis resistance is a hallmark of human cancer. Research in the last two decades has identified key regulators of apoptosis, including inhibitor of apoptosis proteins (IAPs). These critical apoptosis regulators have been targeted for the development of new cancer therapeutics. In this article, we will discuss three members of IAP proteins, namely XIAP, cIAP1 and cIAP2, as cancer therapeutic targets and the progress made in developing new cancer therapeutic agents to target these IAP proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-Inducing Factor

Apaf-1:

Apoptotic protease activating factor 1

Apo2L:

Apo2 ligand

Apo3L:

Apo3 ligand

Bcl-2:

B-cell lymphoma 2

BIR:

Baculoviral IAP Repeat domain

CARD:

Caspase Recruitment Domain

CD95:

Cluster of Differentiation 95

cFLIP:

cellular FLICE-inhibitory protein

cIAP1:

cellular Inhibitor of Apoptosis Protein 1

cIAP2:

cellular Inhibitor of Apoptosis Proteins 2

dATP:

Deoxyadenosine triphosphate

DIABLO:

Direct IAP-Binding protein with Low PI

DISC:

Death-Inducing Signaling Complex

DR:

Death Receptor

FADD:

Fas-Associated protein with Death Domain

FasR:

Fas Receptor

IAPs:

Inhibitors of Apoptosis Proteins

IHC:

Immunohistochemistry

LRIG1:

Leucine-Rich repeats and immunoglobulin-like domains protein 1

ML-IAP:

Melanoma Inhibitor of Apoptosis Protein

NCI:

National Cancer Institute

NFκB:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

PMBC:

Peripheral Mononuclear Blood cells

RING:

Really Interesting New Gene

RIPK1:

Receptor-Interacting serine/threonine-protein Kinase 1

RTK:

Receptor Tyrosine Kinase

Smac:

Second Mitochondria-derived Activator of Caspases

TNF:

Tumor Necrosis Factor

TNF-alpha:

Tumor Necrosis Factor-alpha

TNFR:

Tumor Necrosis Factor Receptor

TRADD:

TNFR Associated DEATH Domain

TRAF:

TNF Receptor Associated Factor

TRAIL:

TNF Related Apoptosis-Inducing Ligand

UBA:

Ubiquitin-Associated domain

References

  1. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21:485–95.

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature. 2000;407:810–6.

    Article  PubMed  CAS  Google Scholar 

  3. Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov. 2002;1:111–21.

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  5. Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2005;25:4798–811.

    Article  Google Scholar 

  6. Candé CVN, Garrido C, Kroemer G. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ. 2004;11:591–5.

    PubMed  Google Scholar 

  7. Deveraux QL, Reed JC. IAP family proteinssuppressors of apoptosis. Genes Dev. 1999;13:239–52.

    Article  PubMed  CAS  Google Scholar 

  8. Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci. 2004;29:486–94.

    Article  PubMed  CAS  Google Scholar 

  9. Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64:7183–90.

    Article  PubMed  CAS  Google Scholar 

  10. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002;3:401–10.

    Article  PubMed  CAS  Google Scholar 

  11. Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11:109–24.

    Article  PubMed  CAS  Google Scholar 

  12. Crook NE, Clem RJ, Miller LK. An apoptosis inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67:2168–74.

    PubMed  CAS  Google Scholar 

  13. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000;10:1359–66.

    Article  PubMed  CAS  Google Scholar 

  14. Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.

    Article  PubMed  CAS  Google Scholar 

  15. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6:1796–803.

    PubMed  CAS  Google Scholar 

  16. Jaffer S, Orta L, Sunkara S, Sabo E, Burstein DE. Immunohistochemical detection of antiapoptotic protein X-linked inhibitor of apoptosis in mammary carcinoma. Hum Pathol. 2007;38:864–70.

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Liu Y, Ji R, Gu Q, Zhao X, Sun B. Prognostic value of the X-linked inhibitor of apoptosis protein for invasive ductal breast cancer with triple-negative phenotype. Hum Pathol. 2010;41:1186–95.

    Article  PubMed  CAS  Google Scholar 

  18. Foster FM, Owens TW, Tanianis-Hughes J, Clarke RB, Brennan K, Bundred NJ, Streuli CH. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Canc Res. 2009;11:R41.

    Article  Google Scholar 

  19. Parton M, Krajewski S, Smith I, Krajewska M, Archer C, Naito M, Ahern R, Reed J, Dowsett M. Coordinate expression of apoptosis-associated proteins in human breast cancer before and during chemotherapy. Clin Cancer Res. 2002;8:2100–8.

    PubMed  CAS  Google Scholar 

  20. Yang L, Cao Z, Yan H, Wood WC. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res. 2003;63:6815–24.

    PubMed  CAS  Google Scholar 

  21. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  22. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102:43–53.

    Article  PubMed  CAS  Google Scholar 

  23. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000;406:855–62.

    Article  PubMed  CAS  Google Scholar 

  24. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408:1004–8.

    Article  PubMed  CAS  Google Scholar 

  25. Wang S. Design of small-molecule Smac mimetics as IAP antagonists. Curr Top Microbiol Immunol. 2011;348:89–113.

    Article  PubMed  CAS  Google Scholar 

  26. Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem. 2004;47:4417–26.

    Article  PubMed  CAS  Google Scholar 

  27. Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, Liu L, Qiu S, Yang C-Y, Miller R, Yi H, Zhang T, Sun D, Kang S, Guo M, Leopold L, Yang D, Wang S. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem. 2011;54:2714–26.

    Article  PubMed  CAS  Google Scholar 

  28. Flygare JA, Beresini M, Budha N, Chan H, Chan IT, Cheeti S, Cohen F, Deshayes K, Doerner K, Eckhardt SG, Elliott LO, Feng B, Franklin MC, Reisner SF, Gazzard L, Halladay J, Hymowitz SG, La H, LoRusso P, Maurer B, Murray L, Plise E, Quan C, Stephan JP, Young SG, Tom J, Tsui V, Um J, Varfolomeev E, Vucic D, Wagner AJ, Wallweber HJ, Wang L, Ware J, Wen Z, Wong H, Wong JM, Wong M, Wong S, Yu R, Zobel K, Fairbrother WJ. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem. 2012;55:4101–13.

    Article  PubMed  CAS  Google Scholar 

  29. Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M, Tassone P, Raje N, Mitsiades C, Mitsiades N, Richardson P, Zawel L, Tran M, Munshi N, Anderson KC. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007;109:1220–7.

    Article  PubMed  CAS  Google Scholar 

  30. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J, Sage D, Slisz J, Tran M, Straub C, Ramsey T, Iourgenko V, Huang A, Chen Y, Schlegel R, Labow M, Fawell S, Sellers WR, Zawel L. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res. 2007;67:11493–8.

    Article  PubMed  CAS  Google Scholar 

  31. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science. 2004;305:1471–4.

    Article  PubMed  CAS  Google Scholar 

  32. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Canc Cell. 2007;12:445–56.

    Article  CAS  Google Scholar 

  33. Sun H, Nikolovska-Coleska Z, Lu J, Meagher JL, Yang CY, Qiu S, Tomita Y, Ueda Y, Jiang S, Krajewski K, Roller PP, Stuckey JA, Wang S. Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc. 2007;129:15279–94.

    Article  PubMed  CAS  Google Scholar 

  34. Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res. 2008;68:9384–93.

    Article  PubMed  CAS  Google Scholar 

  35. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell. 2007;131:669–81.

    Article  PubMed  CAS  Google Scholar 

  36. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell. 2007;131:682–93.

    Article  PubMed  CAS  Google Scholar 

  37. Dueber EC, Schoeffler AJ, Lingel A, Elliott JM, Fedorova AV, Giannetti AM, Zobel K, Maurer B, Varfolomeev E, Wu P, Wallweber HJ, Hymowitz SG, Deshayes K, Vucic D, Fairbrother WJ. Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science. 2011;334:376–80.

    Article  PubMed  CAS  Google Scholar 

  38. Feltham R, Bettjeman B, Budhidarmo R, Mace PD, Shirley S, Condon SM, Chunduru SK, McKinlay MA, Vaux DL, Silke J, Day CL. Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem. 2011;286:17015–28.

    Article  PubMed  CAS  Google Scholar 

  39. Cheung HH, Mahoney DJ, Lacasse EC, Korneluk RG. Down-regulation of c-FLIP Enhances death of cancer cells by smac mimetic compound. Cancer Res. 2009;69:7729–38.

    Article  PubMed  CAS  Google Scholar 

  40. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. 2002;8:808–15.

    PubMed  CAS  Google Scholar 

  41. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem. 2002;277:44236–43.

    Article  PubMed  CAS  Google Scholar 

  42. Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res. 2003;63:831–7.

    PubMed  CAS  Google Scholar 

  43. Bockbrader KM, Tan M, Sun Y. A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene. 2005;24:7381–8.

    Article  PubMed  CAS  Google Scholar 

  44. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Gschwend JE, Simmet T, Debatin KM, Fulda S. Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res. 2008;68:7956–65.

    Article  PubMed  CAS  Google Scholar 

  45. Loeder S, Drensek A, Jeremias I, Debatin KM, Fulda S. Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int J Cancer. 2010;126:2216–28.

    PubMed  CAS  Google Scholar 

  46. Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood. 2009;113:1710–22.

    Article  PubMed  CAS  Google Scholar 

  47. Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L. Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-alpha-dependent manner. Cell Death Differ. 2010;17:1645–54.

    Article  PubMed  CAS  Google Scholar 

  48. Bai L, McEachern D, Yang CY, Lu J, Sun H, Wang S. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFalpha expression and receptor tyrosine kinase signaling. Cancer Res. 2012;72:1229–38.

    Article  PubMed  CAS  Google Scholar 

  49. http://clinicaltrials.gov/

  50. Infante JR, Claire Dees EC, Burris IHA, Zawel L, Sager JA, Stevenson C, Clarke K, Dhuria S, Porter D, Sen SK, Zannou E, Sharma S, Cohen RB. A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. Abstract # 2775, AACR 101st Annual Meeting 2010, April 17–21, 2010, Washington, DC; 2010.

  51. Graham MA, Mitsuuchi Y, Burns J, Chunduru S, Benetatos C, McKinlay M, Weng D, Wick MJ, Tolcher AW, Papadopoulos K, Amaravadi R, Schilder RJ, Adjei A, LoRusso P. In Abstract A25: Phase 1 PK/PD analysis of the Smac-mimetic TL32711 demonstrates potent and sustained cIAP1 suppression in patient PBMCs and tumor biopsies, AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, San Francisco, CA, Nov 12–16, 2011, 2011; San Francisco, CA; 2011.

  52. Sikic BI, Eckhardt SG, Gallant G, Burris HA, Camidge DR, Colevas AD, Jones SF, Messersmith WA, Wakelee HA, Li H, Kaminker PG, Morris S, Infante JR. In Safety, pharmacokinetics (PK), and pharmacodynamics (PD) of HGS1029, an inhibitor of apoptosis protein (IAP) inhibitor, in patients (Pts) with advanced solid tumors: results of a phase I study, 2011 ASCO Annual Meeting 2011; 2011.

  53. Wu YT, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol. 2003;10:759–67.

    Article  PubMed  CAS  Google Scholar 

  54. Schimmer AD, Welsh K, Pinilla C, Wang Z, Krajewska M, Bonneau MJ, Pedersen IM, Kitada S, Scott FL, Bailly-Maitre B, Glinsky G, Scudiero D, Sausville E, Salvesen G, Nefzi A, Ostresh JM, Houghten RA, Reed JC. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Canc Cell. 2004;5:25–35.

    Article  CAS  Google Scholar 

  55. Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, Wang R, Fang X, Guo R, Zhang M, Lippman ME, Yang D, Wang S. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem. 2004;47:2430–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Breast Cancer Research Foundation, the Prostate Cancer Foundation, the Department of Defense Prostate Cancer Program (W81XWH-04-1-0213), Ascenta Therapeutics, and the National Cancer Institute, NIH (5R01CA109025 and 5R01CA127551). We thank Dr. G.W.A. Milne for his critical reading of the manuscript and Ms. Karen Kreutzer for her excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Bai, L., Lu, J. et al. Targeting Inhibitors of Apoptosis Proteins (IAPs) For New Breast Cancer Therapeutics. J Mammary Gland Biol Neoplasia 17, 217–228 (2012). https://doi.org/10.1007/s10911-012-9265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-012-9265-1

Keywords

Navigation