Journal of Mathematical Chemistry

, Volume 51, Issue 2, pp 620–636

Rényi entropy of the U(3) vibron model

Authors

    • Instituto Carlos I de Física Teórica y ComputacionalUniversidad de Granada
    • Departamento de Física Atómica, Molecular y NuclearUniversidad de Granada
  • R. del Real
    • Departamento de Física Atómica, Molecular y NuclearUniversidad de Granada
  • M. Calixto
    • Departamento de Matemática AplicadaUniversidad de Granada
  • S. Nagy
    • Department of Theoretical PhysicsUniversity of Debrecen
    • MTA-DE Research Group in Particle Physics
  • Á. Nagy
    • Instituto Carlos I de Física Teórica y ComputacionalUniversidad de Granada
    • Department of Theoretical PhysicsUniversity of Debrecen
Original Paper

DOI: 10.1007/s10910-012-0106-7

Cite this article as:
Romera, E., del Real, R., Calixto, M. et al. J Math Chem (2013) 51: 620. doi:10.1007/s10910-012-0106-7

Abstract

Rényi entropies and variances are determined in the vibron model. They provide a sharp detector for the quantum (shape) phase transition (from linear to bent) at the critical value ξ c of a control parameter ξ. Numerical results are complemented and compared with a variational approximation in terms of parity-symmetry-adapted coherent (Schödinger’s catlike) states, which provide a good approximation to describe delocalization properties of the ground state of vibron models across the critical point for N-size molecules.

Keywords

Rényi entropies Quantum phase transition Variational approximation Coherent states

Copyright information

© Springer Science+Business Media New York 2012