Skip to main content
Log in

Reconstructing biochemical cluster networks

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Motivated by fundamental problems in chemistry and biology we study cluster graphs arising from a set of initial states \({S\subseteq\mathbb{Z}^n_+}\) and a set of transitions/reactions \({M\subseteq\mathbb{Z}^n_+\times\mathbb{Z}^n_+}\). The clusters are formed out of states that can be mutually transformed into each other by a sequence of reversible transitions. We provide a solution method from computational commutative algebra that allows for deciding whether two given states belong to the same cluster as well as for the reconstruction of the full cluster graph. Using the cluster graph approach we provide solutions to two fundamental questions: (1) Deciding whether two states are connected, e.g., if the initial state can be turned into the final state by a sequence of transition and (2) listing concisely all reactions processes that can accomplish that. As a computational example, we apply the framework to the permanganate/oxalic acid reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel E.: Über den Verlauf der Reaktion zwischen Wasserstoffsuperoxyd und salpetriger Säure. Monatshefte für Chemie/Chemical Monthly 83(5), 1111–1115 (1952)

    Article  CAS  Google Scholar 

  2. Adler S.J., Noyes R.M.: The mechanism of the permanganate-oxalate reaction. J. Am. Chem. Soc. 77(8), 2036–2042 (1955)

    Article  CAS  Google Scholar 

  3. CoCoA Team. CoCoA: a system for doing computations in commutative algebra, Available at http://cocoa.dima.unige.it

  4. Collart S., Kalkbrener M., Mall D.: Converting bases with the Gröbner walk. J. Symb. Comput. 24, 465–469 (2001)

    Article  Google Scholar 

  5. Cox D.A., Little J.B., O’Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2007)

    Google Scholar 

  6. Deiss E.: Fachgruppensitzungen von Donnerstag, den 27. bis Sonnabend, den 29. Mai. Zeitschrift für Angewandte Chemie. 39, 664–665 (1926)

    Article  Google Scholar 

  7. Faulon J.-L., Sault A.G.: Stochastic generator of chemical structure. 3. reaction network generation. J. Chem. Inf. Comput. Sci. 41(4), 894–908 (2001)

    Article  CAS  Google Scholar 

  8. Harcourt A.V., Esson W.: On the laws of connexion between the conditions of a chemical change and its amount. Philos. Trans. Royal Soc. Lond. 156, 193–221 (1866)

    Article  Google Scholar 

  9. Haus U.-U., Hemmecke R.: Unraveling the initial phase of the permanganate/oxalic acid reaction. J. Math. Chem. 48, 305–312 (2010)

    Article  CAS  Google Scholar 

  10. Hemmecke R., Malkin P.N.: Computing generating sets of lattice ideals and markov bases of lattices. J. Symb. Comput. 44, 1463–1476 (2009)

    Article  Google Scholar 

  11. S. Hosten, B. Sturmfels, GRIN: An implementation of Gröbner bases for integer programming. In Integer Program. Comb. Optim. pp. 267–276

  12. Kovács K., Vizvári B., Riedel M., Tóth J.: Decomposition of the permanganate/oxalic acid overall reaction to elementary steps based on integer programming theory. Phys. Chem. Chem. Phys. 6(6), 1236–1242 (2004)

    Article  Google Scholar 

  13. Kovacs K.A., Grof P., Burai L., Riedel M.: Revising the mechanism of the permanganate/oxalate reaction. J. Phys. Chem. A. 108(50), 11026–11031 (2004)

    Article  CAS  Google Scholar 

  14. Kreuzer M., Robbiano L.: Computational Commutative Algebra 1. Springer, Berlin (2000)

    Book  Google Scholar 

  15. Marwan W., Wagler A., Weismantel R.: A mathematical approach to solve the network reconstruction problem. Math. Methods Oper. Res. 67, 117–132 (2008)

    Article  Google Scholar 

  16. Mayr E.W., Meyer A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

    Article  Google Scholar 

  17. Pimienta V., Lavabre D., Levy G., Micheau J.C.: Reactivity of the Mn (III) and Mn (IV) intermediates in the permanganate/oxalic acid/sulfuric acid reaction: kinetic determination of the reducing species. J. Phys. Chem. 98(50), 13294–13299 (1994)

    Article  CAS  Google Scholar 

  18. Shiu A., Sturmfels B.: Siphons in chemical reaction networks. Bull. Math. Biol. 72, 1448–1463 (2010)

    Article  Google Scholar 

  19. Skrabal A.: Über die Primäroxydtheorie der Oxydationspozesse. Zeitschrift fur anorganische Chemie. 42(1), 60–86 (1904)

    Article  Google Scholar 

  20. Szalkai I.: A new general algorithmic method in reaction syntheses using linear algebra. J. Math. Chem. 28(1), 1–34 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Hemmecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haus, UU., Hemmecke, R. & Pokutta, S. Reconstructing biochemical cluster networks. J Math Chem 49, 2441–2456 (2011). https://doi.org/10.1007/s10910-011-9892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9892-6

Keywords

Navigation