Skip to main content
Log in

Development of Ultra-Low-Noise TES Bolometer Arrays

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of \(2\times 10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}\): achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner (\({<}0.25~\upmu \hbox {m}\)) and narrower (\({<}1~\upmu \hbox {m}\)) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin \((0.20~\upmu \hbox {m}\)), narrow (0.5–0.7 \(\upmu \hbox {m}\)), and long (340–460 \(\upmu \hbox {m}\)) SiN legs and show \(T_{\mathrm {c}}\) of \({\sim }93~\hbox {mK}\) and \(R_{\mathrm {n}}\) of \({\sim }158~\hbox {m}{\Omega }\). These TESs were characterized under AC bias using our frequency-division multiplexing readout (1–3 MHz) system. TESs without the absorber show NEPs as low as \(1.1\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}\) with a reasonable response speed (\({<}1~\hbox {ms}\)), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher \(\hbox {NEP}_{\mathrm {el}} ({\sim }5\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}\)) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.S. Holland et al., Proc. SPIE 6275, 62751E (2006)

    Article  Google Scholar 

  2. P. Khosropanah et al., AIP Conf. Proc. 1185, 42 (2009)

    Article  ADS  Google Scholar 

  3. P. Khosropanah et al., IEEE Trans. Appl. Supercond. 21, 236 (2011)

    Article  ADS  Google Scholar 

  4. P. Khosropanah et al., ISSTT2011 Proceedings, vol. 125 (2011)

  5. P. Khosropanah et al., J. Low Phys. 167, 188 (2012)

    Article  ADS  Google Scholar 

  6. J. Mather, Appl. Opt. 21, 1125 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Suzuki et al., IEEE Trans. THz Sci. Technol. 42, 171 (2014)

    Article  Google Scholar 

  8. P. Khosropanah et al., J. Low Phys. 176, 363 (2014)

    Article  ADS  Google Scholar 

  9. M.L. Ridder et al., J. Low Temp. Phys. (2015). doi:10.1007/s10909-015-1381-z

  10. R.A. Hijmering et al., J. Low Temp. Phys. (This Special Issue)

  11. L. Gottardi et al., J. Low Temp. Phys. 167, 161 (2012)

    Article  ADS  Google Scholar 

  12. L. Gottardi et al., Appl. Phys. Lett. 105, 162605 (2014)

    Article  ADS  Google Scholar 

  13. A.D. Beyer et al., Proc. SPIE 8452, 84520G (2012)

    Google Scholar 

  14. T.O. Klaassen et al., ISSTT2012 Proceedings, vol. 400 (2012)

Download references

Acknowledgments

The authors are thankful to Damian Audley and Gert de Lange for scientific discussions, and Martijn Schoemans and Kevin Ravensberg for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Khosropanah, P., Ridder, M.L. et al. Development of Ultra-Low-Noise TES Bolometer Arrays. J Low Temp Phys 184, 52–59 (2016). https://doi.org/10.1007/s10909-015-1401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1401-z

Keywords

Navigation