Skip to main content
Log in

Neutron Dark-Field Imaging of the Domain Distribution in the Intermediate State of Lead

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The intermediate state (IS) of a type-I superconductor is characterized by coexistence of Meissner phase and normal conducting phase. Experiments on the topology of the IS show a variety of universal domain patterns which are also seen in various other physical, chemical or even biological systems on various length and time scales. The possibility to easily tune the domain structure of the IS by a variation of magnetic field or temperature ideally qualifies type-I superconductors as general model systems for the investigation of domain nucleation and distribution. However, the experimental observation of the IS domain structure was up to now restricted to either thin films or surfaces. We demonstrate how neutron grating interferometry (nGI) probes the IS domain distribution in the interior of a bulk single-crystalline lead sample. By means of nGI, we are able to visualize the field penetration process into the superconductor as well as the hysteretic behavior of the intermediate state morphology. Finally, the impact of nGI for investigations on bulk domain nucleation is discussed, as this technique is applicable on many other systems that reveal a phase separation on a micrometer length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The signal-to-noise ratio and flatness of the DFI is mainly governed by the signal-to-noise ratio of the raw neutron images within a stepping scan [30]. Hence, the image quality can be optimized by longer exposure times. However, as the noise statistic changes from a Poisson to a Rician distribution, the signal-to-noise ratio of the DFI does not simply increase as the square root of the exposure time.

References

  1. M. Seul, D. Andelman, Science 267(5197), 476 (1995). doi:10.1126/science.267.5197.476. http://www.sciencemag.org/content/267/5197/476.abstract

  2. R. Prozorov, A.F. Fidler, J.R. Hoberg, P.C. Canfield, Nat. Phys. 4(4), 327 (2008). doi:10.1038/nphys888

    Article  Google Scholar 

  3. R. Prozorov, Phys. Rev. Lett. 98, 257001 (2007). doi:10.1103/PhysRevLett.98.257001

    Article  ADS  Google Scholar 

  4. J.D. Livingston, W. DeSorbo, Superconductivity, vol. 2 (Marcel Dekker, New York, 1969)

    Google Scholar 

  5. R. Huebener, Magnetic Flux Structures in Superconductors: Extended Reprint of a Classic Text. Springer Series in Solid-State Sciences (Springer, Berlin, Heidelberg, 2001). https://books.google.de/books?id=ECqitKduW74C

  6. L.D. Landau, Nature 141, 688 (1938)

    Article  ADS  Google Scholar 

  7. R. Choksi, R.V. Kohn, F. Otto, J. Nonlinear Sci. 14(2), 119 (2004). doi:10.1007/s00332-004-0568-2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. J.R. Clem, R. Prozorov, R.J. Wijngaarden, Phys. Rev. B 88, 104504 (2013). doi:10.1103/PhysRevB.88.104504

    Article  ADS  Google Scholar 

  9. R. Goren, M. Tinkham, J. Low Temp. Phys. 5(4), 465 (1971). doi:10.1007/BF00629539

    Article  ADS  Google Scholar 

  10. H. Träuble, U. Essmann, Phys. Status Solidi (b) 18(2), 813 (1966). doi:10.1002/pssb.19660180235

    Article  ADS  Google Scholar 

  11. C.A. Duran, P.L. Gammel, R. Wolfe, V.J. Fratello, D.J. Bishop, J.P. Rice, D.M. Ginsberg, Nature 357(6378), 474 (1992). doi:10.1038/357474a0

    Article  ADS  Google Scholar 

  12. L.D. Landau, J. Phys. U.S.S.R. 7, 99 (1943)

    Google Scholar 

  13. E. Zeldov, A.I. Larkin, V.B. Geshkenbein, M. Konczykowski, D. Majer, B. Khaykovich, V.M. Vinokur, H. Shtrikman, Phys. Rev. Lett. 73, 1428 (1994). doi:10.1103/PhysRevLett.73.1428

    Article  ADS  Google Scholar 

  14. N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, J. Banhart, Nat. Phys. 4(5), 399 (2008). doi:10.1038/nphys912

    Article  Google Scholar 

  15. W. Treimer, O. Ebrahimi, N. Karakas, R. Prozorov, Phys. Rev. B 85, 184522 (2012). doi:10.1103/PhysRevB.85.184522

    Article  ADS  Google Scholar 

  16. C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kühne, R. Schäfer, S. Pofahl, H.M.R. Rønnow, F. Pfeiffer, Appl. Phys. Lett. 93(11), 112504 (2008). doi:10.1063/1.2975848. http://scitation.aip.org/content/aip/journal/apl/93/11/10.1063/1.2975848

  17. C. Grünzweig, F. Pfeiffer, O. Bunk, T. Donath, G. Kühne, G. Frei, M. Dierolf, C. David, Rev. Sci. Instrum. 79(5), 053703 (2008). doi:10.1063/1.2930866. http://scitation.aip.org/content/aip/journal/rsi/79/5/10.1063/1.2930866

  18. C. Grünzweig, Neutron grating interferometry for imaging magnetic structures in bulk ferromagnetic materials. Ph.D. thesis, ETH Zrich (2009)

  19. M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, F. Pfeiffer, Phys. Rev. Lett. 101, 123902 (2008). doi:10.1103/PhysRevLett.101.123902

    Article  ADS  Google Scholar 

  20. C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kühne, J. Kohlbrecher, R. Schäfer, P. Lejcek, H.M.R. Rønnow, F. Pfeiffer, Phys. Rev. Lett. 101, 025504 (2008). doi:10.1103/PhysRevLett.101.025504

    Article  ADS  Google Scholar 

  21. F. Pfeiffer, C. Grünzweig, O. Bunk, G. Frei, E. Lehmann, C. David, Phys. Rev. Lett. 96, 215505 (2006). doi:10.1103/PhysRevLett.96.215505

    Article  ADS  Google Scholar 

  22. T. Reimann, S. Mühlbauer, M. Schulz, B. Betz, A. Kaestner, V. Pipich, P. Böni, C. Grünzweig, Nat. Commun. 6, 8813 (2015). doi:10.1038/ncomms9813

    Article  ADS  Google Scholar 

  23. E. Lau, Ann. Phys. 6, 417 (1948)

    Article  Google Scholar 

  24. M. Strobl, Sci. Rep. 4, (2014). doi:10.1038/srep07243

  25. A. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, E. Lehmann, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 659(1), 387 (2011). doi:10.1016/j.nima.2011.08.022. http://www.sciencedirect.com/science/article/pii/S0168900211016044

  26. I. Anderson, R. McGreevy, H. Bilheux, Neutron Imaging and Applications: A Reference for the Imaging Community. Neutron Scattering Applications and Techniques (Springer, Berlin, 2009)

    Google Scholar 

  27. J.R. Hoberg, R. Prozorov, Phys. Rev. B 78, 104511 (2008). doi:10.1103/PhysRevB.78.104511

    Article  ADS  Google Scholar 

  28. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). doi:10.1103/PhysRev.108.1175

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. D.R. Lide, CRC Handbook of Chemistry and Physics, 74th edn. (CRC Press, Boca Raton, 1993)

    Google Scholar 

  30. M. Chabior, T. Donath, C. David, M. Schuster, C. Schroer, F. Pfeiffer, J. Appl. Phys. 110(5), 053105 (2011). doi:10.1063/1.3630051

    Article  ADS  Google Scholar 

  31. M. Benkraouda, J.R. Clem, Phys. Rev. B 53, 5716 (1996). doi:10.1103/PhysRevB.53.5716

    Article  ADS  Google Scholar 

  32. E.H. Brandt, Rep. Prog. Phys. 58(11), 1465 (1995). http://stacks.iop.org/0034-4885/58/i=11/a=003

  33. T. Reimann, M. Schulz, S. Mühlbauer, M. Horisberger, C. Grünzweig, B. Betz, P. Böni, in preparation In preparation

  34. A.S. Tremsin, V. Dangendorf, K. Tittelmeier, B. Schillinger, M. Schulz, M. Lerche, W. Feller, arXiv:150.00077v1 [physics.ins-det] (2015)

  35. S. Mühlbauer, C. Pfleiderer, P. Böni, E.M. Forgan, E.H. Brandt, A. Wiedenmann, U. Keiderling, G. Behr, Phys. Rev. B 83, 184502 (2011). doi:10.1103/PhysRevB.83.184502

    Article  ADS  Google Scholar 

  36. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E.F. Eikenberry, C. Bronnimann, C. Grunzweig, C. David, Nat. Mater. 7(2), 134 (2008). doi:10.1038/nmat2096

    Article  ADS  Google Scholar 

  37. J. Kim, K.H. Lee, C.H. Lim, T. Kim, C.W. Ahn, G. Cho, S.W. Lee, Rev. Sci. Instrum. 84(6), 063705 (2013). doi:10.1063/1.4810014. http://scitation.aip.org/content/aip/journal/rsi/84/6/10.1063/1.4810014

  38. T.H. Jensen, M. Bech, I. Zanette, T. Weitkamp, C. David, H. Deyhle, S. Rutishauser, E. Reznikova, J. Mohr, R. Feidenhans’l, F. Pfeiffer, Phys. Rev. B 82, 214103 (2010). doi:10.1103/PhysRevB.82.214103

    Article  ADS  Google Scholar 

  39. W. Yashiro, S. Harasse, K. Kawabata, H. Kuwabara, T. Yamazaki, A. Momose, Phys. Rev. B 84, 094106 (2011). doi:10.1103/PhysRevB.84.094106

    Article  ADS  Google Scholar 

  40. C. Grünzweig, J. Kopecek, B. Betz, A. Kaestner, K. Jefimovs, J. Kohlbrecher, U. Gasser, O. Bunk, C. David, E. Lehmann, T. Donath, F. Pfeiffer, Phys. Rev. B 88, 125104 (2013). doi:10.1103/PhysRevB.88.125104

    Article  ADS  Google Scholar 

  41. S.K. Lynch, V. Pai, J. Auxier, A.F. Stein, E.E. Bennett, C.K. Kemble, X. Xiao, W.K. Lee, N.Y. Morgan, H.H. Wen, Appl. Opt. 50(22), 4310 (2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407965/

Download references

Acknowledgments

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under the NMI3-II Grant number 283883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Reimann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimann, T., Schulz, M., Grünzweig, C. et al. Neutron Dark-Field Imaging of the Domain Distribution in the Intermediate State of Lead. J Low Temp Phys 182, 107–116 (2016). https://doi.org/10.1007/s10909-015-1399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1399-2

Keywords

Navigation