Skip to main content
Log in

A Tunable Coupler with ScS Quantum Point Contact to Mediate Strong Interaction Between Flux Qubits

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper we propose a kind of quantum inductance couplers (QUINC) which represents a superconducting loop closed by ScS quantum point contact, operating in deep quantum low-temperature regime to provide tunable (Ising-type) ZZ interaction between flux qubits. This coupler is shown to be well tunable by an external control magnetic flux and to provide large inter-qubit interaction energies \(|J/k_{\rm B}|\simeq1~\mathrm{K}\) thus being very promising as a qubit-coupling device in a quantum register as well as for studying fundamental low-temperature quantum phenomena. Some entanglement measures of a two-qubit system are analyzed as functions of inter-qubit interaction strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Steane, Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998). arXiv:quant-ph/9708022v2

    Article  MathSciNet  ADS  Google Scholar 

  2. S.Y. Kilin, Quantum information. Phys. Usp. 42, 435–452 (1999)

    Article  ADS  Google Scholar 

  3. K.A. Valiev, Quantum computers and quantum computations. Phys. Usp. 48, 1–36 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. J.L. Brylinski, R. Brylinski, Universal quantum gates, in Mathematics of Quantum Computation (Chapman and Hall/CRC Press, London, 1994), p. 124. arXiv:quant-ph/0108062v1

    Google Scholar 

  5. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  6. L.H. Kauffman, S.J. Lomonaco, Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  7. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  8. J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  9. A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner, H.-G. Meyer, A.Yu. Smirnov, M.H.S. Amin, A.M. van den Brink, A.M. Zagoskin, Evidence for entangled states of two coupled flux qubits. Phys. Rev. Lett. 93, 037003 (2004)

    Article  ADS  Google Scholar 

  10. J.B. Majer, F.G. Paauw, A.C.J. ter Haar, C.J.P.M. Harmans, J.E. Mooij, Spectroscopy on two coupled superconducting flux qubits. Phys. Rev. Lett. 94, 090501 (2005)

    Article  ADS  Google Scholar 

  11. B.L.T. Plourde, J. Zhang, K.B. Whaley, F.K. Wilhelm, T.L. Robertson, T. Hime, S. Linzen, P.A. Reichardt, C.-E. Wu, J. Clarke, Entangling flux qubits with a bipolar dynamic inductance. Phys. Rev. B 70, 140501(R) (2004)

    Article  ADS  Google Scholar 

  12. A.M. van den Brink, A.J. Berkley, M. Yalowsky, Mediated tunable coupling of flux qubits. New J. Phys. 7, 230 (2005)

    Article  Google Scholar 

  13. M.J. Storcz, F.K. Wilhelm, Design of realistic switches for coupling superconducting solid-state qubits. Appl. Phys. Lett. 83, 2387 (2003)

    Article  ADS  Google Scholar 

  14. T. Hime, P.A. Reichardt, B.L.T. Plourde, T.L. Robertson, C.-E. Wu, A.V. Ustinov, J. Clarke, Solid-state qubits with current-controlled coupling. Science 314, 1427 (2006)

    Article  ADS  Google Scholar 

  15. R. Harris, A.J. Berkley, M.W. Johnson, P. Bunyk, S. Govorkov, M.C. Thom, S. Uchaikin, A.B. Wilson, J. Chung, E. Holtham, J.D. Biamonte, A.Yu. Smirnov, M.H.S. Amin, A.M. van den Brink, Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys. Rev. Lett. 98, 177001 (2007)

    Article  ADS  Google Scholar 

  16. V.I. Shnyrkov, A.A. Soroka, A.M. Korolev, O.G. Turutanov, Superposition of states in flux qubits with a Josephson junction of the ScS type. Low Temp. Phys. 38, 301 (2012)

    Article  ADS  Google Scholar 

  17. V.I. Shnyrkov, A.A. Soroka, O.G. Turutanov, Quantum superposition of three macroscopic states and superconducting qutrit detector. Phys. Rev. B 85, 224512 (2012). arXiv:1111.6571v3 [cond-mat.supr-con]

    Article  ADS  Google Scholar 

  18. N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003)

    Article  ADS  Google Scholar 

  19. C.W.J. Beenakker, H. van Houten, Josephson current through a superconducting quantum point contact shorter than the coherence length. Phys. Rev. Lett. 66, 3056 (1991)

    Article  ADS  Google Scholar 

  20. C.W.J. Beenakker, H. van Houten, The superconducting quantum point contact. arXiv:cond-mat/0512610v1

  21. I.O. Kulik, A.N. Omelyanchouk, Josephson effect in superconducting bridges: microscopic theory. Sov. J. Low Temp. Phys. 4, 142 (1978)

    Google Scholar 

  22. A.J. Leggett, Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415–R451 (2002)

    Article  ADS  Google Scholar 

  23. I.M. Dmitrenko, V.A. Khlus, G.M. Tsoi, V.I. Shnyrkov, Quantum decay of metastable current states in RF SQUIDs. Sov. J. Low Temp. Phys. 11, 77 (1985)

    Google Scholar 

  24. I.M. Dmitrenko, V.A. Khlus, G.M. Tsoi, V.I. Shnyrkov, Macroscopic quantum tunneling in the r.f. SQUID with S-c-S point contacts. Nuovo Cimento D 9, 1057 (1987)

    Article  ADS  Google Scholar 

  25. V.A. Khlus, Quantum fluctuations in superconducting point contacts. Sov. J. Low Temp. Phys. 12, 25 (1986)

    Google Scholar 

  26. U. Eckern, G. Schön, V. Ambegaokar, Quantum dynamics of a superconducting tunnel junction. Phys. Rev. B 30, 6419 (1984)

    Article  ADS  Google Scholar 

  27. W.K. Wootters, Quantum entanglement as a quantifiable resource. Philos. Trans. R. Soc. Lond. A 356, 1717 (1998)

    Article  ADS  Google Scholar 

  28. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  29. J. Schlienz, G. Mahler, Description of entanglement. Phys. Rev. A 52, 4396 (1995)

    Article  ADS  Google Scholar 

  30. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  31. C. Kothe, I. Sainz, G. Björk, Detecting entanglement through correlations between local observables. J. Phys. Conf. Ser. 84, 012010 (2007)

    Article  ADS  Google Scholar 

  32. D. Buchholz, J. Yngvason, There are no causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 73, 613 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank O.G. Turutanov for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soroka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soroka, A.A., Shnyrkov, V.I. A Tunable Coupler with ScS Quantum Point Contact to Mediate Strong Interaction Between Flux Qubits. J Low Temp Phys 172, 212–225 (2013). https://doi.org/10.1007/s10909-013-0873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0873-y

Keywords

Navigation