, Volume 157, Issue 3-4, pp 221-251
Date: 08 Jul 2009

Quantum Size Effects in the Growth, Coarsening, and Properties of Ultra-thin Metal Films and Related Nanostructures

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This review addresses the quantum mechanical nature of the formation and stability of ultrathin metal films. The competition between quantum confinement, charge spilling effects, and Friedel oscillations determines whether an atomically smooth metal film will be marginally, critically, or magically stable or totally unstable against roughening. Pb(111) films represent a special case, not only because of strong quantum oscillations in the stability of two-dimensional thin films but also because of the exceptionally fast coarsening of Pb nanoclusters. The latter appears to be due to the combined effects of size quantization and the existence of a unique mass exchange medium in the form of an unusually dense and highly dynamic wetting layer. The consequences of size quantization on the physical and chemical properties of the films are profound, some of which will be highlighted in this review.