Skip to main content
Log in

Organometallic Derivatives of Cyclotriphosphazene as Precursors of Nanostructured Metallic Materials: A New Solid State Method

Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. A.S. Edelstein, R.C. Cammarata (eds.), Nanomaterials: Synthesis Properties and Applications (J. W. Arrowsmith Ltd, Bristol, 2000)

    Google Scholar 

  2. K.J. Klabunde (ed.), Nanoscale Materials in Chemistry (Wiley Interscience, New York, 2001)

  3. C.N. Rao, A. Muller, A.K. Cheetham (eds.), The Chemistry of Nanomaterials, Synthesis, Properties and Applications, vol. 2 (Wiley-VCH, Weinheim, 2004), pp. 170–207

    Google Scholar 

  4. A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757 (2002)

    Article  CAS  Google Scholar 

  5. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)

    Article  CAS  Google Scholar 

  6. M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  CAS  Google Scholar 

  7. R. Petersen, D. Foucher, B. Tang, A. Lough, N. Raju, J.E. Greedan, I. Manners, Chem. Mater. 7, 2045 (1995)

    Article  CAS  Google Scholar 

  8. T. Shimizu, T. Teranishi, S. Hasegawa, M.J. Miyake, Phys. Chem. B 107, 2719 (2003)

    Article  CAS  Google Scholar 

  9. T. Teranis, S. Hasegawa, T. Shimizu, M. Miyake, Adv. Mater. 13, 1699 (2001)

    Article  Google Scholar 

  10. M.M. Maye, W. Zheng, F.L. Leibowitz, N.K. Ly, Ch.J. Zhong, Langmuir 16, 490 (2000)

    Article  CAS  Google Scholar 

  11. E.R. Leite, N.L.V. Carreño, E. Longo, F.M. Pontes, A. Barison, A.G. Ferreiro, Y. Manitte, J.A. Varela, Chem. Mater. 14, 3722 (2002)

    Article  CAS  Google Scholar 

  12. C. Díaz, M.L. Valenzuela, Horizons in Polymer Research, ed. by R.B. Bregg (Nova SciencePublishers, New York, 2005) Chapter 6

  13. C. Díaz, P. Castillo, J. Inorg. Organomet. Polym. 11, 183 (2002)

    Article  Google Scholar 

  14. C. Díaz, P. Castillo, G.A. Carriedo, P. Gómez-Elipe, F.J. García Alonso, Macromol. Phys. Chem. 203, 1912 (2002)

    Article  Google Scholar 

  15. G.A. Carriedo, F.J. García-Alonso, P. Gómez-Elipe, C. Díaz, N. Yutronic, J. Chilean Chem. Soc. 48, 25 (2003)

    CAS  Google Scholar 

  16. C. Díaz, P. Castillo, Polym. Bull. 50, 123 (2003)

    Article  Google Scholar 

  17. C. Díaz, M.L. Valenzuela, M. Barbosa, Mater. Res. Bull. 9, 39 (2004)

    Google Scholar 

  18. G.A. Carriedo, F.J. García Alonso, J.L. García Álvarez, C. Díaz, N. Yutronic, Polyhedron 21, 2579 (2002)

    Article  CAS  Google Scholar 

  19. M.A. Olshavsky, H.R. Allcock, Chem. Mater. 9, 1367 (1997)

    Article  CAS  Google Scholar 

  20. C.H. Walker, J.St. John, P. Wisian-Neilson, J. Am. Chem. Soc. 123, 3846 (2001)

    Article  CAS  Google Scholar 

  21. J. Jung, T. Kmecko, Ch.L. Claypool, H. Zhang, P. Wisian-Neilson, Macromolecules 38, 2122 (2005)

    Article  CAS  Google Scholar 

  22. C. Díaz, M.L. Valenzuela, Macromolecules 39, 103 (2006)

    Article  Google Scholar 

  23. C. Díaz, P. Castillo, M.L. Valenzuela, J. Clust. Sci. 16, 515 (2005)

    Article  Google Scholar 

  24. C. Díaz, M.L. Valenzuela, J. Inorg. Organomet. Polym. 16, 123 (2006)

    Article  Google Scholar 

  25. C. Díaz, M.L. Valenzuela, S. Ushak, V. Lavayen, C. O’Dwyer, J. Nanosci. Nanotechnol. 9, 1825 (2009)

    Article  Google Scholar 

  26. C. Díaz, M.L. Valenzuela, D. Bravo, V. Lavayen, C. O’Dwyer, Inorg. Chem. 47, 11561 (2008)

    Article  Google Scholar 

  27. C. Díaz, I. Izquierdo, Polyhedron 18, 1479 (1999)

    Article  Google Scholar 

  28. C. Díaz, I. Izquierdo, F. Mendizábal, N. Yutronic, Inorg. Chim. Acta 294, 20 (1999)

    Article  Google Scholar 

  29. G.A. Carriedo, F.J. García Alonso, J.L. García Álvarez, C. Díaz, N. Yutronic, Polyhedron 21, 2587 (2002)

    Article  CAS  Google Scholar 

  30. C. Díaz, F. Mendizábal, Bol. Soc. Chil. Quim. 46, 293 (2001)

    Google Scholar 

  31. C. Díaz, M. Barbosa, Z. Godoy, Polyhedron 23, 1027 (2004)

    Article  Google Scholar 

  32. M. Gleria, R. De Jaeger (eds.), Applicative Aspects of Cyclophospahezenes (Nova Science Publishers, New York, 2004)

    Google Scholar 

  33. R. De Jaeger, M. Gleria, Prog. Polym. Sci. 23, 173 (1998)

    Google Scholar 

  34. V. Chandrasekhar, K.R. Justin Thomas, J. Appl. Organomet. Chem. 1, 7 (1993)

    Google Scholar 

  35. V. Chandrasekhar, S. Nagendran, Chem. Soc. Rev. 3, 193 (2001)

    Article  Google Scholar 

  36. M.F. Lappert, K. Srivastaca, J. Chem. Soc. A 193 (1996)

  37. H.R. Allcock, Acc. Chem. Res. 12, 352 (1979)

    Article  Google Scholar 

  38. D.E. Brown, K. Ramachandra, K.R. Carter, C.W. Allen, Macromolecules 34, 2870 (2001)

    Article  CAS  Google Scholar 

  39. S.J. Maynard, T.R. Sharp, J.F. Haw, Macromolecules 24, 2794 (1991)

    Article  CAS  Google Scholar 

  40. D. Kumar, A.D. Gupta, Macromolecules 28, 6323 (1995)

    Article  CAS  Google Scholar 

  41. H.R. Allcock, G.S. McDonnell, G.H. Riding, I. Manners, Chem. Mater. 2, 425 (1990)

    Article  CAS  Google Scholar 

  42. G.A. Carriedo, J.F. García Alonso, C. Díaz, M.L. Valenzuela, Polyhedron 25, 105 (2005)

    Article  Google Scholar 

  43. H.R. Allcock, K.D. Lavin, N.M. Tollefson, T.I. Evan, Organometallics 2, 267 (1983)

    Article  CAS  Google Scholar 

  44. H.R. Allcock, A.A. Dembek, E.H. Klingenberg, Macromolecules 24, 5208 (1991)

    Article  CAS  Google Scholar 

  45. T.I. Trentler, T.E. Denler, J.F. Bertory, A. Agrawd, V.L. Colvin, J. Am. Chem. Soc. 121, 16313 (1999)

    Article  Google Scholar 

  46. G. Zhang, L. Gao, Langmuir 19, 967 (2003)

    Article  CAS  Google Scholar 

  47. Y. Zhang, J. Li, J. Wang, Chem. Mater. 18, 2917 (2006)

    Article  CAS  Google Scholar 

  48. S. Perera, N. Zelenski, E. Gillan, Chem. Mater. 18, 2381 (2006)

    Article  CAS  Google Scholar 

  49. I.C. Mancu, J.M. Millet, J.J. Sandulescu, Serb. Chem.Soc. 70, 791 (2005)

    Article  Google Scholar 

  50. I.C. Marcu, J. Sandulescu, J.M. Millet, Appl. Catal. A 227, 309 (2002)

    Article  CAS  Google Scholar 

  51. A. Laachechi, M. Cochez, E. Levy, P. Gaudon, M. Ferrol, J.M. López-Cuesta, Polym. Adv. Technol. 17, 327 (2006)

    Article  Google Scholar 

  52. W. Suchank, M. Yoshimine, J. Mater. Res. 13, 94 (1998)

    Article  Google Scholar 

  53. J. Sanz, J.E. Iglesias, J. Soria, E.R. Grilla, M.A.G. Aranda, S. Bruque, Chem. Mater. 9, 996 (1997)

    Article  CAS  Google Scholar 

  54. P. Looss, A.M. Le Ray, G. Grimandi, G. Daculsi, C. Merle, Biomaterials 22, 2785 (2001)

    Article  Google Scholar 

  55. K.E. Lipinska-Kalita, M.B. Kneger, S. Carlson, A.M. Krogh Andersen, Physica B 337, 221 (2003)

    Article  CAS  Google Scholar 

  56. A.G. Dias, L.M.S. Skakle, I.R. Gibson, M.A. Lopez, J.D. Santos, J. Non-Cryst. Solids 351, 810 (2005)

    Article  CAS  Google Scholar 

  57. V. Karthuis, N. Khosrovani, A.W. Sleight, N. Roberts, R. Dupree, W.W. Warren Jr, Chem. Mater. 7, 412 (1995)

    Article  Google Scholar 

  58. C. Diaz, M.L. Valenzuela, E. Spodine, Y. Moreno, O. Peña, J. Clust. Sci. 8(31), 59 (2007)

    Google Scholar 

  59. F.A. Cotton, J.T. Mague, Inorg. Chem. 5, 317 (1966)

    Article  CAS  Google Scholar 

  60. M.T. Colomer, J.R. Jurado, Chem. Mater. 12, 923 (2000)

    Article  CAS  Google Scholar 

  61. L. Ji, J. Lin, H.C. Zeng, Chem. Mater. 13, 2403 (2001)

    Article  CAS  Google Scholar 

  62. W. Dmowski, T. Egani, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, J. Phys. Chem. B 103, 12677 (2002)

    Article  Google Scholar 

  63. C. Díaz, M.L. Valenzuela, N. Yutronic, J. Inorg. Organomet. Polym. Mater. 17, 577 (2007)

    Article  Google Scholar 

  64. N. Xu, M. Sun, W. Cao, N. Yao, E.G. Wang, Appl. Surf. Sci. 157, 84 (2000)

    Article  Google Scholar 

  65. M. Sun, N. Xu, W. Cao, E. Wang, J. Mater. Res. 15, 927 (2000)

    Article  CAS  Google Scholar 

  66. J.F. Keggin, R. Proc, Soc. Ser. A 144, 75 (1934)

    Article  CAS  Google Scholar 

  67. A. Talledo, C.G. Granqvist, J. Appl. Phys. 77, 4655 (1995)

    Article  CAS  Google Scholar 

  68. J. Livage, Chem. Mater. 3, 758 (1991)

    Article  Google Scholar 

  69. J.L. Solis, S. Saukko, L. Kish, C.G. Granquist, V. Lantto, Thin Solid Films 391, 255 (2001)

    Article  CAS  Google Scholar 

  70. P. Ponzi, C. Duschatzky, A. Carrascull, E. Ponzi, Appl. Catal. A 169, 373 (1998)

    Article  CAS  Google Scholar 

  71. G. Gu, B. Zheng, W.Q. Han, S. Roth, J. Liu, Nano Lett. 2, 849 (2002)

    Article  CAS  Google Scholar 

  72. Q. Han, C. Wang, J. Liu, Adv. Mater. 15, 411 (2003)

    Article  Google Scholar 

  73. H. Wang, X. Quan, Y. Zhang, S. Chen, Nanotehnology 19, 065704 (2008)

    Article  Google Scholar 

  74. J. Yu, H. Yu, M.L. Guo, S. Mann, Small 4, 87 (2008)

    Article  CAS  Google Scholar 

  75. K. Hong, M. Xie, R. Hu, H. Wu, Nanotechnology 19, 085604 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of FONDECYT project 1085011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, C., Valenzuela, M.L., Zúñiga, L. et al. Organometallic Derivatives of Cyclotriphosphazene as Precursors of Nanostructured Metallic Materials: A New Solid State Method. J Inorg Organomet Polym 19, 507–520 (2009). https://doi.org/10.1007/s10904-009-9286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-009-9286-4

Keywords

Navigation