Skip to main content

Advertisement

Log in

Upper bounding in inner regions for global optimization under inequality constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In deterministic continuous constrained global optimization, upper bounding the objective function generally resorts to local minimization at several nodes/iterations of the branch and bound. We propose in this paper an alternative approach when the constraints are inequalities and the feasible space has a non-null volume. First, we extract an inner region, i.e., an entirely feasible convex polyhedron or box in which all points satisfy the constraints. Second, we select a point inside the extracted inner region and update the upper bound with its cost. We describe in this paper two original inner region extraction algorithms implemented in our interval B&B called IbexOpt (AAAI, pp 99–104, 2011). They apply to nonconvex constraints involving mathematical operators like , \( +\; \bullet ,\; /,\; power,\; sqrt,\; exp,\; log,\; sin\). This upper bounding shows very good performance obtained on medium-sized systems proposed in the COCONUT suite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We consider minimization in this paper without loss of generality.

  2. An interval \([x_i]=[\underline{x_i},\overline{x_i}]\) defines the set of reals \(x_i\) s.t. \(\underline{x_i} \le x_i \le \overline{x_i}\). A box \([x]\) is the Cartesian product of intervals \([x_1] \times \cdots \times [x_i] \times \cdots \times [x_n]\).

  3. \(\epsilon \)-minimize \(f(x)\) means minimize \(f(x)\) with a precision \(\epsilon \), i.e., we have \(f(y) \ge f(x)-\epsilon \), for all (feasible) \(y\).

  4. In addition, Chabert and Beldiceanu handled a dual problem consisting in finding a box with no solution (i.e., all points in this box violate the constraints) and required an initial point to be “inflated” to a box...

  5. With floating-point numbers, an interval evaluation is conservative (i.e., contains all the real-valued images) if the lower bound of the interval image is rounded towards \(-\infty \) while the upper bound is rounded to \(+\infty \). Both rounding operations constitute a so-called outward rounding. With inward rounding, the lower bound is rounded towards \(+\infty \) and the upper bound towards \(-\infty \). The property enforced by outward (resp. inward) rounding for an operator \(op\) is (1), resp. (2):

    1. 1.

      \(\forall x \in [x] ~~ \exists z \in op([x]) ~~ z=op(x)\)

    2. 2.

      \(\forall z\in op([x]) ~~ \exists x \in [x] ~~ z=op(x)\)

  6. In the case 2, only one inner interval is considered among the different ones in the union. In the case 3, only one maximal inner box is computed (using a random choice on \(x_1\)) among an infinite number of possibles boxes. The last case gathers both drawbacks (from cases 2 and 3). Consider for instance the case of the multiplication \(x_1 \cdot x_2 \in [z]\) where \(z\) is positive (see left side of Fig. 6).

  7. The difficulty is only related to our implementation. The maximality can be more easily checked with a direct implementation.

References

  1. Araya, I., Trombettoni, G., Neveu, B.: Exploiting monotonicity in interval constraint propagation. In: Proceedings of AAAI, pp. 9–14 (2010)

  2. Araya, I., Trombettoni, G., Neveu, B.: A contractor based on convex interval Taylor. In: CPAIOR, pp. 1–16. LNCS 7298 (2012)

  3. Belotti, P.: Couenne, a user’s manual (2013). http://www.coin-or.org/Couenne/

  4. Benhamou, F., Goualard, F.: Universally quantified interval constraints. In: Proceedings of CP, Constraint Programming, LNCS 1894, pp. 67–82 (2004)

  5. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proceedings of ICLP, pp. 230–244 (1999)

  6. Bliek, C.: Computer methods for design automation. Ph.D. thesis, MIT (1992)

  7. Chabert, G., Beldiceanu, N.: Sweeping with continuous domains. In: Proceedings of CP, LNCS 6308, pp. 137–151 (2010)

  8. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100 (2009)

    Article  Google Scholar 

  9. Collavizza, H., Delobel, F., Rueher, M.: Extending consistent domains of numeric CSP. In: Proceedings of IJCAI, pp. 406–413 (1999)

  10. Goldsztejn, A.: Définition et applications des extensions des fonctions réelles aux intervalles généralisés: nouvelle formulation de la théorie des intervalles modaux et nouveaux résultats. Ph.D. thesis, University of Nice Sophia Antipolis (2005)

  11. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    Google Scholar 

  12. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic, Dordrecht (1996)

    Book  Google Scholar 

  13. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1997)

    Google Scholar 

  14. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42(5), 2076–2097 (2005)

    Article  Google Scholar 

  15. Lin, Y., Stadtherr, M.: LP strategy for the interval-Newton method in deterministic global optimization. Ind. Eng. Chem. Res. 43, 3741–3749 (2004)

    Article  Google Scholar 

  16. McAllester, D., Van Hentenryck, P., Kapur, D.: Three cuts for accelerated interval propagation. tech. rep. AI Memo 1542, Massachusetts Institute of Technology (1995)

  17. Messine, F., Laganouelle, J.L.: Enclosure methods for multivariate differentiable functions and application to global optimization. J. Univ. Comput. Sci. 4(6), 589–603 (1998)

    Google Scholar 

  18. Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution des problèmes avec contraintes. Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse (1997)

  19. Moore, R., Kearfott, R.B., Cloud, M.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

  20. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  21. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. tech. rep. RT-APO-10-05, IRIT (2010)

  23. Oettli, W.: On the solution set of a linear system with inaccurate coefficients. SIAM J. Numer. Anal. 2(1), 115–118 (1965)

    Google Scholar 

  24. Rohn, J.: Inner solutions of linear interval systems. In: Proceedings of Interval Mathematics 1985, LNCS 212, pp. 157–158 (1986)

  25. Shary, S.: Solving the linear interval tolerance problem. Math. Comput. Simul. 39, 53–85 (1995)

    Article  Google Scholar 

  26. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  Google Scholar 

  27. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: AAAI, pp. 99–104 (2011)

  28. Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Proceedings of CP, LNCS 4741, pp. 635–650 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Trombettoni.

Additional information

Ignacio Araya is supported by the Fondecyt Project 11121366 and the UTFSM Researcher Associated Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araya, I., Trombettoni, G., Neveu, B. et al. Upper bounding in inner regions for global optimization under inequality constraints. J Glob Optim 60, 145–164 (2014). https://doi.org/10.1007/s10898-014-0145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0145-7

Keywords

Navigation