Skip to main content
Log in

The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The Distance Geometry Problem in three dimensions consists in finding an embedding in \({\mathbb{R}^3}\) of a given nonnegatively weighted simple undirected graph such that edge weights are equal to the corresponding Euclidean distances in the embedding. This is a continuous search problem that can be discretized under some assumptions on the minimum degree of the vertices. In this paper we discuss the case where we consider the full-atom representation of the protein backbone and some of the edge weights are subject to uncertainty within a given nonnegative interval. We show that a discretization is still possible and propose the iBP algorithm to solve the problem. The approach is validated by some computational experiments on a set of artificially generated instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.: The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)

    Article  Google Scholar 

  2. Carvalho R.S., Lavor C., Protti F.: Extending the geometric build-up algorithm for the molecular distance geometry problem. Inf. Process. Lett. 108, 234–237 (2008)

    Article  Google Scholar 

  3. Coope I.D.: Reliable computation of the points of intersection of n spheres in \({\mathbb{R}^n}\) . Australian N. Z. Ind. Appl. Math. J. 42, C461–C477 (2000)

    Google Scholar 

  4. Eren, T., Goldenberg, D.K., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, pp. 2673–2684 (2004)

  5. Henneberg L.: Die graphische Statik der starren Systeme. B.G. Teubner, Leipzig (1911)

    Google Scholar 

  6. Kirkpatrick S., Jr. Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  7. Krislock, N.: Semidefinite facial reduction for low-rank Euclidean distance matrix completion. Ph.D. thesis, University of Waterloo (2010)

  8. Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. (to appear)

  9. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Technical report q-bio/0608012, arXiv (2006)

  10. Lavor C., Liberti L., Maculan N.: Molecular distance geometry problem. In: Floudas, C., Pardalos , P. (eds) Encyclopedia of Optimization. 2nd edn, pp. 2305–2311. Springer, New York (2009)

    Google Scholar 

  11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. (2011, to appear)

  12. Lavor, C., Liberti, L., Mucherino, A.: On the solution of molecular distance geometry problems with interval data. In: International Conference on Bioinformatics and Biomedicine, IEEE Conference Proceedings, Hong Kong (2010)

  13. Lavor C., Mucherino A., Liberti L., Maculan N.: Discrete approaches for solving molecular distance geometry problems using nmr data. Int. J. Comput. Biosci. 1, 88–94 (2011)

    Google Scholar 

  14. Lavor C., Mucherino A., Liberti L., Maculan N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Glob. Optim. 50, 329–344 (2011)

    Article  Google Scholar 

  15. Lee-St. John, A.: Geometric constraint systems with applications in CAD and biology. Ph.D. thesis, University of Massachusetts at Amherst (2008)

  16. Liberti L., Lavor C., Maculan N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  Google Scholar 

  17. Liberti L., Lavor C., Mucherino A., Maculan N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2011)

    Article  Google Scholar 

  18. Liu, X., Pardalos, P.M.: A tabu based pattern search method for the distance geometry problem. In: Giannessi, F. et al. (eds.) New Trends in Mathematical Programming, pp. 223–234. Kluwer Academic Publishers, The Netherlands (1998)

  19. Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of the International Conference on Computational Biology, vol. 58. World Academy of Science, Engineering and Technology, 349–353 (2009)

  20. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. (to appear)

  21. Mucherino A., Lavor C., Liberti L., Maculan N.: On the definition of artificial backbones for the discretizable molecular distance geometry problem. Mathematica Balkanica 23, 289–302 (2009)

    Google Scholar 

  22. Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an exact and a metaheuristic algorithm for the molecular distance geometry problem. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 333–340. Montreal, ACM (2009)

  23. Nilges M., Gronenborn A.M., Brunger A.T., Clore G.M.: Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988)

    Article  Google Scholar 

  24. Nilges M., Macias M.J., O’Donoghue S.I., Oschkinat H.: Automated noesy interpretation with ambiguous distance restraints: The refined nmr solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997)

    Article  Google Scholar 

  25. Pardalos, P.M., Shalloway, D., Xu, G. (eds.): Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding. DIMACS. AMS (1996)

  26. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

  27. Schlick T.: Molecular modelling and simulation: an interdisciplinary guide. Springer, New York (2002)

    Book  Google Scholar 

  28. So M.-C., Ye Y.: Theory of semidefinite programming for sensor network localization. Math. Programm. 109, 367–384 (2007)

    Article  Google Scholar 

  29. Wu D., Wu Z., Yuan Y.: Rigid versus unique determination of protein structures with geometric buildup. Optim. Lett. 2, 319–331 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mucherino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavor, C., Liberti, L. & Mucherino, A. The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J Glob Optim 56, 855–871 (2013). https://doi.org/10.1007/s10898-011-9799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9799-6

Keywords

Navigation