Skip to main content
Log in

A mixed-integer optimization framework for the synthesis and analysis of regulatory networks

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Motivation: A novel mixed-integer optimization framework is proposed for the design and analysis of regulatory networks. The model combines gene expression data and prior biological knowledge regarding the potential for regulatory interactions between genes and their corresponding transcription factors. The formalism provides significant advantages over available modeling methodologies in that the complexity of the regulatory network can be explicitly taken into account, multiple alternative structures can be systematically generated and finally robust and biological significant regulators can be rigorously identified. The original non-convex mixed integer reformulation is appropriately linearized and the resulting MILP is effectively optimized using standard solvers. The versatility is demonstrated using gene expression and binding data from an E. coli case study during transition from glucose to acetate as the sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alter, O., Golub, G.H.: Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. Proc. Natl. Acad. Sci. U.S.A. 101(47), 16577–16582 (2004)

    Article  Google Scholar 

  • Biegler, L.T., Grossmann, I.E. et al.: Systematic Methods of Chemical Process Design. Prentice Hall (1997)

  • Boulesteix, A.L., Strimmer, K.: Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor. Biol. Med. Model. 2, 23 (2005)

    Article  Google Scholar 

  • Brooke, A., Kendrick, D. et al.: GAMS A user’s guide. GAMS Development Corporation (2004)

  • Bussemaker, H.J., Li, H. et al.: Regulatory element detection using correlation with expression. Nat. Genet. 27(2), 167–171 (2001)

    Article  Google Scholar 

  • Calvo, J.M., Matthews, R.G.: The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58(3), 466–490 (1994)

    Google Scholar 

  • Chapuy-Regaud, S., Ogunniyi, A.D. et al.: RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect. Immun. 71(5), 2615–2625 (2003)

    Article  Google Scholar 

  • Chen, C.C., Wu, H.Y.: LeuO protein delimits the transcriptionally active and repressive domains on the bacterial chromosome. J. Biol. Chem. 280(15), 15111–15121 (2005)

    Article  Google Scholar 

  • Chen, K.C., Wang, T.Y. et al.: A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21(12), 2883–2890 (2005)

    Article  Google Scholar 

  • Covert, M.W., Knight, E.M. et al.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004)

    Article  Google Scholar 

  • DiRusso, C.C., Heimert, T.L. et al.: Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J. Biol. Chem. 267(12), 8685–8691 (1992)

    Google Scholar 

  • Drazinic, C.M., Smerage, J.B. et al.: Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol. Cell. Biol. 16(6), 3187–3196 (1996)

    Google Scholar 

  • Gao, F., Foat, B.C. et al.: Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5, 31 (2004)

    Article  Google Scholar 

  • Gervais, F.G., Phoenix, P. et al.: The rcsB gene, a positive regulator of colanic acid biosynthesis in Escherichia coli, is also an activator of ftsZ expression. J. Bacteriol. 174(12), 3964–3971 (1992)

    Google Scholar 

  • Harbison, C.T., Gordon, D.B. et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004), 99–104 (2004)

    Article  Google Scholar 

  • Iyer, V.R., Horak, C.E. et al.: Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409(6819), 533–538 (2001)

    Article  Google Scholar 

  • Kakeda, M., Ueguchi, C. et al.: An Escherichia coli curved DNA-binding protein whose expression is affected by the stationary phase-specific sigma factor sigma S. Mol. Gen. Genet. 248(5), 629–634 (1995)

    Article  Google Scholar 

  • Kao, K.C., Yang, Y.L. et al.: Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. U.S.A. 101(2), 641–646 (2004)

    Article  Google Scholar 

  • Kao, K.C., Tran, L.M. et al.: A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J. Biol. Chem. 280(43), 36079–36087 (2005)

    Article  Google Scholar 

  • Kato, M., Hata, N. et al.: Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5(8), R56 (2004)

    Article  Google Scholar 

  • Landini, P., Hajec, L.I. et al.: Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J. Bacteriol. 176(21), 6583–6589 (1994)

    Google Scholar 

  • Lawley, B., Pittard, A.J.: Regulation of aroL expression by TyrR protein and Trp repressor in Escherichia coli K-12. J. Bacteriol. 176(22), 6921–6930 (1994)

    Google Scholar 

  • Lawley, B., Fujita, N. et al.: The TyrR protein of Escherichia coli is a class I transcription activator. J. Bacteriol. 177(1), 238–241 (1995)

    Google Scholar 

  • Lee, T.I., Rinaldi, N.J. et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Article  Google Scholar 

  • Maxson, M.E., Darwin, A.J.: Multiple promoters control expression of the Yersinia enterocolitica phage-shock-protein A (pspA) operon. Microbiology 152(Pt 4), 1001–1010 (2006)

    Article  Google Scholar 

  • Ng, A., Bursteinas, B. et al.: pSTIING: a ‘systems’ approach towards integrating signalling pathways, interaction and transcriptional regulatory networks in inflammation and cancer. Nucleic Acids Res. 34(Database issue), D527–D534 (2006)

    Article  Google Scholar 

  • Oh, M.K., Rohlin, L. et al.: Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 277(15), 13175–13183 (2002)

    Article  Google Scholar 

  • Pournara, I., Wernisch, L.: Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics 8, 61 (2007)

    Article  Google Scholar 

  • Rolfes, R.J., Zalkin, H.: Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF operator. J. Biol. Chem. 263(36), 19653–19661 (1988)

    Google Scholar 

  • Salgado, H., Santos-Zavaleta, A. et al.: RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res. 29(1), 72–74 (2001)

    Article  Google Scholar 

  • Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Weslet, Reading (1976)

    Google Scholar 

  • Stormo, G.D., Fields, D.S.: Specificity, free energy and information content in protein-DNA interactions. Trends Biochem. Sci. 23(3), 109–113 (1998)

    Article  Google Scholar 

  • Sun, N., Carroll, R.J. et al.: Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proc. Natl. Acad. Sci. U.S.A. 103(21), 7988–7993 (2006)

    Article  Google Scholar 

  • Thomas, R., Mehrotra, S. et al.: A model-based optimization framework for the inference on gene regulatory networks from DNA array data. Bioinformatics 20(17), 3221–3235 (2004)

    Article  Google Scholar 

  • Tran, L.M., Brynildsen, M.P. et al.: gNCA: A framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metab. Eng. 7(2), 128–141 (2005)

    Article  Google Scholar 

  • van Steensel, B., Delrow, J. et al.: Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc. Natl. Acad. Sci. U.S.A. 100(5), 2580–2585 (2003)

    Article  Google Scholar 

  • Wagner, A., Wright, J.: Alternative routes and mutational robustness in complex regulatory networks. Biosystems 88(1–2), 163–172 (2007)

    Article  Google Scholar 

  • Wang, X.D., de Boer, P.A. et al.: A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. Embo. J. 10(11), 3363–3372 (1991)

    Google Scholar 

  • Wang, W., Cherry, J.M. et al.: A systematic approach to reconstructing transcription networks in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 99(26), 16893–16898 (2002)

    Article  Google Scholar 

  • Yeung, M.K., Tegner, J. et al.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U.S.A. 99(9), 6163–6168 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Androulakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foteinou, P.T., Yang, E., Saharidis, G.K. et al. A mixed-integer optimization framework for the synthesis and analysis of regulatory networks. J Glob Optim 43, 263–276 (2009). https://doi.org/10.1007/s10898-007-9266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9266-6

Keywords

Navigation