1.

Aarts E., Korst J. (1989) Simulated Annealing and Boltzmann Machines. Wiley, New York

2.

Anily S., Federgruen A. (1987) Ergodicity in parametric nonstationary Markov chains: an application to simulated annealing methods. Operations Res. 35(6):867–874

3.

Anily S., Federgruen A. (1987) Simulated annealing methods with general acceptance probabilities. J.Appl. Prob. 24:657–667

CrossRef4.

Auslender A., Cominetti R., Maddou M. (1997) Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Operations Res. 22:43–62

5.

Back T., Hoffmeister F., Schwefel H.-P. A survey of evolution strategies. In: Proceedings of the 4th Int’l Conference on Genetic Algorithms, pp 2–9. San Diego, CA, (1991)

6.

Bean J.C., Hadj-Alouane, A.B.: A dual genetic algorithm for bounded integer programs. In Technical Report TR 92-53, Department of Industrial and Operations Engineering, The University of Michigan (1992)

7.

Bertsekas D.P., Koksal A.E. (2000) Enhanced optimality conditions and exact penalty functions. Proceedings of Allerton Conference, Allerton, IL

8.

Bongartz I.,Conn A.R.,Gould N., Toint P.L. (1995) CUTE: Constrained and unconstrained testing environment. ACM Trans. Math Softw, 21(1):123–160

CrossRef9.

Chen, Y.X.: Solving nonlinear constrained optimization problems through constraint partitioning. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana, IL (2005)

10.

Corana A., Marchesi M., Martini C., Ridella S. (1987) Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Trans. Math. Softw. 13(3):262–280

CrossRef11.

Evans J.P., Gould F.J., Tolle J.W. (1973) Exact penalty functions in nonlinear programming. Math. Program. 4:72–97

CrossRef12.

Fletcher R. (1970) A class of methods for nonlinear programming with termination and convergence properties. In: Abadie J.(eds) Integer and Nonlinear Programming. North-Holland, Amsterdam

13.

Fletcher R. An exact penalty function for nonlinear programming with inequalities. Technical Report 478, Atomic Energy Research Establishment, Harwell (1972)

14.

Fourer R., Gay D.M., Kernighan B.W. AMPL: A Modeling Language for Mathematical Programming. Brooks Cole Publishing Company (2002)

15.

Freidlin M.I., Wentzell A.D. (1984) Random Perturbations of Dynamical Systems. Springer, Berlin

16.

Gill P.E., Murray W., Saunders M. (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12:979–1006

CrossRef17.

Homaifar A., Lai S.H-Y., Qi X. (1994) Constrained optimization via genetic algorithms. Simulation 62(4):242–254

18.

Joines J., Houck C.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with gas. In: Proceedings of the First IEEE Int’l Conf. on Evolutionary Computation, pp. 579–584. Orlando, FL (1994)

19.

Kirkpatrick S., Gelatt Jr., C.D., Vecchi M.P. (1983). Optimization by simulated annealing. Science. **220**(4598): 671–680

20.

Krishnan, S., Krishnamoorthy, S., Baumgartner, G., Lam, C.C., Ramanujam, J., Sadayappan, P., Choppella, V.: Efficient synthesis of out-of-core algorithms using a nonlinear optimization solver.Technical report, Department of Computer and Information Science, Ohio State University, Columbus, OH (2004)

21.

Kuri, A.: A universal electric genetic algorithm for constrained optimization. In: Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, pp. 518–522. Aachen, Germany (1998)

22.

Luenberger D.G. (1984) Linear and Nonlinear Programming. Addison-Wesley, Reading, MA

23.

Mitra D., Romeo F., Vincentelli A.S. (1986) Convergence and finite-time behavior of simulated annealing. Adv. Appl. Prob. 18:747–771

CrossRef24.

Rardin R.L. (1998) Optimization in Operations Research. Prentice Hall, New York

25.

Trouve, A.: Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms. Technical report, LMENS-94-8, Ecole Normale , France (1994)

26.

Trouve A. (1996) Cycle decomposition and simulated annealing. SIAM J. Control Optim. 34(3):966–986

CrossRef27.

Wah B., Chen Y.X. (2006) Constraint partitioning in penalty formulations for solving temporal planning problems. Artif Intel 170(3):187–231

CrossRef28.

Wah, B.W., Chen, Y.X.: Solving large-scale nonlinear programming problems by constraint partitioning. In: Proceedigs of the Principles and Practice of Constraint Programming, LCNS-3709, pp. 697–711. Springer-Verlag, New York (2005)

29.

Wah, B.W., Wang, T.: Simulated annealing with asymptotic convergence for nonlinear constrained global optimization. In: Proceedings of the Principles and Practice of Constraint Programming, pp. 461–475. Springer-Verlag, New York (1999)

30.

Wah, B.W., Wu, Z.: The theory of discrete Lagrange multipliers for nonlinear discrete optimization. In: Proceedings of the Principles and Practice of Constraint Programming, pp. 28–42. Springer-Verlag, New York (1999)

31.

Wang, T.: Global Optimization for Constrained Nonlinear Programming. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana, IL (2000)

32.

Wu, Z.: The Theory and Applications of Nonlinear Constrained Optimization using Lagrange Multipliers. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana, IL (2001)

33.

Zangwill W.I. (1967) Nonlinear programming via penalty functions. Manag. Sci. 13:344–358

CrossRef