, Volume 33, Issue 4, pp 617-624

Beyond Convex? Global Optimization is Feasible Only for Convex Objective Functions: A Theorem

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


It is known that there are feasible algorithms for minimizing convex functions, and that for general functions, global minimization is a difficult (NP-hard) problem. It is reasonable to ask whether there exists a class of functions that is larger than the class of all convex functions for which we can still solve the corresponding minimization problems feasibly. In this paper, we prove, in essence, that no such more general class exists. In other words, we prove that global optimization is always feasible only for convex objective functions.