Analysis of Simulated Fluorescence Intensities Decays by a New Maximum Entropy Method Algorithm
 Rosario Esposito,
 Carlo Altucci,
 Raffaele Velotta
 … show all 3 hide
Abstract
A new algorithm for the Maximum Entropy Method (MEM) is proposed for recovering the lifetime distribution in timeresolved fluorescence decays. The procedure is based on seeking the distribution that maximizes the Skilling entropy function subjected to the chisquared constraint χ ^{2} ~ 1 through iterative linear approximations, LU decomposition of the Hessian matrix of the lagrangian problem and the Golden Section Search for backtracking. The accuracy of this algorithm has been investigated through comparisons with simulated fluorescence decays both of narrow and broad lifetime distributions. The proposed approach is capable to analyse datasets of up to 4,096 points with a discretization ranging from 100 to 1,000 lifetimes. A good agreement with non linear fitting estimates has been observed when the method has been applied to multiexponential decays. Remarkable results have been also obtained for the broad lifetime distributions where the position is recovered with high accuracy and the distribution width is estimated within 3 %. These results indicate that the procedure proposed generates MEM lifetime distributions that can be used to quantify the real heterogeneity of lifetimes in a sample.
 Diamandis, EP (1993) Fluorescence spectroscopy. Anal Chem 65: pp. 454459 CrossRef
 Wolfbeis OS (2008) Fluorescence methods and applications: spectroscopy, imaging, and probes: spectroscopy, imaging, and probes. WileyBlackwell
 Fushimi, K (1991) Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol 112: pp. 719725 CrossRef
 Lakowicz, JR (2002) Topics in fluorescence spectroscopy. Protein fluorescence, vol 6. Kluwer, Norwell CrossRef
 Valeur, B (2002) Molecular fluorescence: principles and applications. WileyVCH, Weinheim
 Haldar, S, Kombrabail, M, Krishnamoorthy, G, Chattopadhyay, A (2010) Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method. J Fluoresc 20: pp. 407413 CrossRef
 Marquardt, DW (1963) An algorithm for leastsquares estimation of nonlinear parameters. J Soc Indust Appl Math 11: pp. 431441 CrossRef
 Vangala, S, Vidugiris, GAJ, Royer, CA (1998) Probing the relation between protein structure and intrinsic tryptophan fluorescence using superrepressor mutants of thetrp repressor. J Fluoresc 8: pp. 111 CrossRef
 Lakshmikanth, GS, Sridevi, K, Krishnamoorthy, G, Udgaonkar, JB (2001) Structure is lost incrementally during the unfolding of barstar. Nature Struct Biol 8: pp. 799804 CrossRef
 Sanchez, KM, Kang, G, Wu, B, Kim, JE (2011) Tryptophanlipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy. Biophys J 100: pp. 21212130 CrossRef
 Steinbach, PJ, Ionescu, R, Matthews, CR (2002) Analysis of kinetics using a hybrid maximumentropy/nonlinearleastsquares method: application to protein folding. Biophys J 82: pp. 22442255 CrossRef
 Tseng, CY, Tuszynski, JA (2010) Using entropy leads to a better understanding of biological systems. Entropy 12: pp. 24502469 CrossRef
 Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP (1992) Numerical recipes in Fortran. BOOK, vol 1. Cambridge University Press, Cambridge
 Livesey, AK, Skilling, J (1985) Maximum entropy theory. Acta Cryst 41: pp. 113122
 Livesey, AK, Brochon, JC (1987) Analyzing the distribution of decay constants in pulsefluorimetry using the maximum entropy method. Biophys J 52: pp. 693706 CrossRef
 Brochon, JC (1994) Maximum entropy method of data analysis in timeresolved spectroscopy. Methods in Enzymology 240: pp. 262311 CrossRef
 Dudewicz, E, Meulen, E (1981) Entropy based tests of uniformity. J Am Stat Assoc 76: pp. 967974 CrossRef
 Mérola, F, Rigler, R, Holmgren, A, Brochon, JC (1989) Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. Biochemistry 28: pp. 33833398 CrossRef
 Lavalette, D, Tetreau, C, Brochon, JC, Livesey, A (1991) Conformational fluctuations and protein reactivity. Determination of the rateconstant spectrum and consequences in elementary biochemical processes. FEBS J 196: pp. 591598
 Kumar ATN, Zhu L, Christian JF, Demidov AA, Champion PM (2001) Society, pp 7847–7856
 Vecer, J, Herman, P (2011) Maximum entropy analysis of analytically simulated complex fluorescence decays. J Fluoresc 21: pp. 873881 CrossRef
 Golub, GH, O’Leary, DP (1989) Some history of the conjugate gradient and Lanczos methods. SIAM Rev 31: pp. 50102 CrossRef
 Skilling, J, Bryan, R (1984) Maximum entropy image reconstructiongeneral algorithm. MNRAS 211: pp. 111124
 Hager, WW, Zhang, H (2005) A survey of nonlinear conjugate gradient methods. Science 2: pp. 3558
 Swaminathan, R, Periasamy, N (1996) Analysis of fluorescence decay by the maximum entropy method: influence of noise and analysis parameters on the width of the distribution of lifetimes. Proc Indian Acad Sci Chem Sci 108: pp. 3949
 Shaver, JM, McGown, LB (1996) Maximum entropy method for frequency domain fluorescence lifetime analysis. 1. Effects of frequency range and random noise. Anal Chem 68: pp. 917 CrossRef
 Golub, GH, Van Loan, CF (1996) Matrix computations, vol 3. Johns Hopkins Univ Press, Baltimore
 Beechem, JM, Brand, L (1985) Timeresolved fluorescence of proteins. Annu Rev Biochem 54: pp. 4371 CrossRef
 Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP (2007) Numerical recipes: the art of scientific computing. Cambridge Univ Press, Cambridge
 Brent RP (2002) Algorithms for minimization without derivatives. Courier Dover Publications, p 195
 Edition T (2008) Scanning, p 478
 Martinez, WL, Martinez, AR, Crc, H, Raton, B, New, L, Washington, Y (2009) Computational statistics handbook with MATLAB. Biometrics 65: pp. 338
 Devroye, L (1988) Nonuniform random variate generation. J Am Stat Assoc 83: pp. 906 CrossRef
 Title
 Analysis of Simulated Fluorescence Intensities Decays by a New Maximum Entropy Method Algorithm
 Open Access
 Available under Open Access This content is freely available online to anyone, anywhere at any time.
 Journal

Journal of Fluorescence
Volume 23, Issue 1 , pp 203211
 Cover Date
 20130101
 DOI
 10.1007/s1089501211350
 Print ISSN
 10530509
 Online ISSN
 15734994
 Publisher
 Springer US
 Additional Links
 Topics
 Keywords

 Maximum Entropy Method
 Fluorescence lifetime distributions
 Synthetic data
 Industry Sectors
 Authors

 Rosario Esposito ^{(1)}
 Carlo Altucci ^{(1)}
 Raffaele Velotta ^{(1)}
 Author Affiliations

 1. Dipartimento Scienze Fisiche, Complesso Universitario MonteSantangelo, Universitá di Napoli ‘Federico II’, Naples, Italy