Skip to main content
Log in

Interaction of CdTe Quantum Dots with 2,2-Diphenyl-1-Picrylhydrazyl Free Radical: A Spectroscopic, Fluorimetric and Kinetic Study

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical with thiol-capped CdTe quantum dots (QDs) has been studied by UV–vis spectroscopy, steady state and time resolved fluorescence measurements. Addition of DPPH radical to CdTe QDs resulted in fluorescence quenching. The interaction occurs through static quenching as this was confirmed by fluorescence lifetime measurements. Time course absorption studies indicates that DPPH may be reduced by interaction with QDs to the substituted hydrazine form (2,2-diphenyl-1-picrylhydrazine) DPPH-H. The mechanism of fluorescence quenching of CdTe QDs by DPPH is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Yun-Sheng X, Chang-Qing Z (2009) Interaction of CdTe nanocrystals with thiol-containing amino acids at different pH: a fluorimetric study. Microchim Acta 164:29–34

    Article  Google Scholar 

  2. Ming H, Jia N (2010) Determination of vanadium (V) with CdTe quantum dots as fluorescent probes. Anal Bioanal Chem 397:3589–3593

    Article  Google Scholar 

  3. Ling D, Zhou PJ, Li SQ, Shi GY, Zhong T, Wu M (2011) Spectroscopic studies on the thermodynamic of L-cysteine capped CdSe/CdS quantum dots-BSA interaction. J Fluoresc 21:17–24

    Article  Google Scholar 

  4. Fan J, Zhou J, Sun T, Lu S, Tang J, Lu J (2010) Multi-spectroscopic study on the interaction between CdTe quantum dots and bovine serum albumin. Chin J Chem 28:2353–2358

    Article  CAS  Google Scholar 

  5. Juan-Juan P, Shao-Pu L, Lei W, You-Qiu H (2010) Studying the interaction between CdTe quantum dots and nile blue by absorption, fluorescence and resonance rayleigh scattering spectra. Spectrochimica Part A 75:1571–1576

    Article  Google Scholar 

  6. Raquel EG, Miguel-De-La G (2009) The use of quantum dots in organic chemistry. Trends Anal Chem 28:279–291

    Article  Google Scholar 

  7. Ken-Tye Y, Wing-Cheung L, Indrajit R, Zhu J, Huijie H, Mark TS, Paras NP (2011) Aqueous phase synthesis of CdTe quantum dots for biophotonics. J Biophotonics 4:9–20

    Article  Google Scholar 

  8. Xianxiang W, Yi L, Xiandeng H (2011) A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta 84:382–386

    Article  Google Scholar 

  9. Victor IK (2010) Nancrystal quantum dots. CRC, Florida

    Google Scholar 

  10. Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PTK, Strijkers GJ, De-Donega C, Nicolay K, Griffioen AW (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    Article  PubMed  CAS  Google Scholar 

  11. Jin WJ, Fernandez-Arguelles MT, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2005) Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous soultions. Chem Commun 883–885

  12. Tomasulo M, Yildiz I, Raymo FM (2006) pH-sensitive quantum dots. J Phys Chem B 110:3853–3855

    Article  PubMed  CAS  Google Scholar 

  13. Ping Z, Ying Y, Jianzhong W, Yan L, Bo C, Zhaoyang L, Chunsui L (2006) Preparation and application of functionalized nanoparticles of CdSe capped with 11-mercaptoundecanoic acid as a fluorescent probe. Talanta 70:902–906

    Article  Google Scholar 

  14. Qiao X, Jian-Hao W, Zhan W, Zhao-Hui Y, Qin Y, Yuan-Di Z (2008) Interaction of CdTe quantum dots with DNA. Electrochem Commun 10:1337–1339

    Article  Google Scholar 

  15. Callen JF, Mulrooney RC, Sukanta K, Bridgeen M (2008) Anion sensing with luminescent quantum dots – a modular approach based on the photoinduced electron transfer (PET) mechanism. J Fluoresc 18:527–532

    Article  Google Scholar 

  16. Neuman D, Ostrowski AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC (2008) Quantum dot fluoresence quenching pathways with Cr (III) complexes. Photosensitized NO Production from trans-Cr(cyclam)(ONO) +2 . J Am Chem Soc 130:168–175

    Article  PubMed  CAS  Google Scholar 

  17. Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M (2007) Preparation and characterization of thiacalix[4]arene coated water-soluble CdSe/ZnS quantum dots as a fluorescent probe for Cu2+ ions. Comb Chem High Throughput Screening 10:473–479

    Article  CAS  Google Scholar 

  18. Vincent M, Marie L, Paul B, Robert G, Scaiano JC (2006) Free radical sensor based on CdSe quantum dots with added 4-Amino-2,2,6,6-Tetramethylpiperidine oxide functionality. J Phys Chem B 110:16353–16358

    Article  Google Scholar 

  19. Jie FS, Cui LR, Li HL, Xing GC (2008) CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution. Chin Chem Lett 19:855–859

    Article  Google Scholar 

  20. Wenfeng Z, Yingsing F, Waisum O, Cheung MPL (2010) L-cysteine-capped CdTe quantum dots as fluoresencence probe for determination of cardiolipin. Anal Sci 26:879–884

    Article  Google Scholar 

  21. Ionita P (2005) Is DPPH stable free radical a good scavenger for oxygen active species? Chem Pap 59:11–16

    CAS  Google Scholar 

  22. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Ed 76:1260–1264

    Article  CAS  Google Scholar 

  23. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  24. Hao Z, Zhen Z, Bai Y (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticle. J Phys Chem B 107:8–13

    Article  Google Scholar 

  25. Idowu M, Chen J-Y, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32:290–296

    Article  CAS  Google Scholar 

  26. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  27. Guo W, Li JJ, Wang YA, Peng X (2003) Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J Am Chem Soc 125:3901–3909

    Article  PubMed  CAS  Google Scholar 

  28. Jipei Y, Weiwei G, Erkang W (2008) Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors. Anal Chim Acta 630:174–180

    Article  Google Scholar 

  29. Duyang G, Zonghai S, Heyou H (2010) A novel method for the analysis of calf thymus DNA based on CdTe quantum dots-Ru(bpy) 2+3 photoinduced electron transfer system. Microchim Acta 168:341–345

    Article  Google Scholar 

  30. Mandal A, Tamai N (2008) Influence of acid on luminescence properties of thioglygolic acid-capped CdTe quantum dots. J Phys Chem C 112:8244–8250

    Article  CAS  Google Scholar 

  31. Blatt E, Mau AWH, Sasse WHF, Sawyer WH (2008) Simulated Stern-Volmer Plots for 1–1 Ground-State Complexation. Aust J Chem 41:127–131

    Article  Google Scholar 

  32. Jhonsi MA, Renganathan R (2010) Investigation on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J Colloid Interface Sci 344:596–602

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Qu L, Zhang J, Peng X, Xiao M (2003) Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett 3:1103–1106

    Article  CAS  Google Scholar 

  34. Sanz M, Correa-Duarte MA, Liz-Marzan LM, Douhal A (2008) Femtosecond dynamics of CdTe quantum dots in water. J Photochem Photobiol A: Chem 196:51

    Article  CAS  Google Scholar 

  35. Chong EZ, Matthews DR, Summers HD, Njoh KL, Errington RJ, SmithPJ (2007) Development of fret-based assays in the far-red using CdTe quantum dots. J Biomed Biotechnol 54169

  36. Javier A, Magana D, Jennings T, Strouse GF (2003) Nanosecond exciton recombination dynamics in colloidal CdSe quantum dots under ambient conditions. Appl Phys Lett 83:1423–1425

    Article  CAS  Google Scholar 

  37. Zhang JY, Wang XY, Xiao M (2002) Modification of spontaneous emission of CdSe/CDS quantum dots in the presence of a semiconductor interface. Opt Lett 27:1253–1255

    Article  PubMed  CAS  Google Scholar 

  38. Geckeler KE, Samal S (2001) Rapid assessment of the free radical scavenging property of fullerenes. Fullerene Sci Technol 9:17–23

    Article  CAS  Google Scholar 

  39. Paul S, Saikia JP, Samdarshi SK, Konwar BK (2009) Investigation of antioxidant property of iron oxide particles by 1,1-diphenylpicryl-hydrazyle (DPPH) method. J Magn Magn Mater 321:3621–3623

    Article  CAS  Google Scholar 

  40. Ryoko I, Tomokazu Y, Kunio E (2005) Preparation of Au/TiO2 nanocomposites and their catalytic activity for DPPH radical scavenging reaction. J Colloid Interface Sci 288:177–183

    Article  Google Scholar 

  41. Demirhan F, Taban G, Baya M, Dinoi C, Daran J-C, Poli R (2006) Reduction of [Cp *2 Mo2O5]by thioglycolic acid in an aqueous medium: Synthesis and structure of [{Cp*Mo(μ-SCH2COO)}2(μ-S)]. J Organomet Chem 691:648–654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology as well as Rhodes University and DST/Mintek Nanotechnology Innovation Centre (NIC) – Sensors, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adegoke, O., Chidawanyika, W. & Nyokong, T. Interaction of CdTe Quantum Dots with 2,2-Diphenyl-1-Picrylhydrazyl Free Radical: A Spectroscopic, Fluorimetric and Kinetic Study. J Fluoresc 22, 771–778 (2012). https://doi.org/10.1007/s10895-011-1012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-1012-2

Keywords

Navigation