, Volume 18, Issue 5, pp 801-811
Date: 05 Jan 2008

Non-invasive Near Infrared Fluorescence Imaging of CdHgTe Quantum Dots in Mouse Model

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Near infrared CdHgTe quantum dots (QDs) acted as biomarker for in vivo imaging were synthesized in aqueous solution. The size and the fluorescence wavelength of the synthesized quantum dots can be arbitrary manipulated by using different refluxing time. In particular, the fluorescence wavelength was extended to near infrared range (700∼900 nm), which make the in vivo imaging possible. Meanwhile, the characteristics, such as morphology, size, spectra, stability and toxicity were investigated. The dynamic bio-distribution, clearance from blood, liver and intestine in living animal were in vivo monitored by a NIR imaging system. The circulation of CdHgTe QDs in living mice was addressed semi-quantitatively according to the changes of fluorescence intensity. The high stability as well as high fluorescence intensity makes QDs particular interested candidates for in vivo imaging studies.