Skip to main content
Log in

Plasma Focus Radiative Model: Review of the Lee Model Code

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The code couples the electrical circuit with plasma focus (PF) dynamics, thermodynamics and radiation. It is energy-, charge- and mass-consistent and accounts for the effects of transit times of small disturbances and plasma self-absorption. It has been used in design and interpretation of Mather-type PF experiments and as a complementary facility to provide diagnostic reference numbers in all gases. Information computed includes axial and radial dynamics, SXR emission characteristics and yield for various applications including microelectronics lithography and optimization of machines. Plasma focus neutron yield calculations, current and neutron yield limitations, deterioration of neutron scaling (neutron saturation), radiative collapse, speed-enhanced PF, current-stepped PF and extraction of diagnostic and anomalous resistance data from current signals have been studied using the code; which also produces reference numbers for fluence, flux and energy of deuteron beams and ion beams for all gases. There has been no pause in its continuous evolution in three decades so much so that the model code has no formal source reference except www.plasmafocus.net. This review presents, for the first time a comprehensive up-to-date version of the 5-phase model code. The equations of each phase are derived. Those of the first two phases are normalized to reveal important scaling parameters. The focus pinch phase is discussed with radiation-coupled dynamics necessitating the computation of radiation terms moderated by plasma self-absorption. Neutron and ion beam yields are computed. The 5-phase model code appears to be adequate for all Mather-type PF, lacking only in one aspect that for high inductance PF (termed Type 2) the measured current waveform contains an extended dip which cannot be fitted by the 5-phase code; necessitating an extended 6-phase code. This sixth phase (termed phase 4a) is dominated by anomalous resistance, providing a way to extract valuable data on anomalous resistivity from the current trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.V. Filippov, T.I. Filippova, V.P. Vinogradov, Nucl. Fusion. Suppl 2, 577 (1962). http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4731683

  2. J.W. Mather, Phys. Fluids 7, S28 (1964)

    Article  ADS  Google Scholar 

  3. D.E. Potter, Phys. Fluids 14, 1911 (1971)

    Article  ADS  Google Scholar 

  4. M. Trunk, Plasma Phys. 17, 237–248 (1975)

    Article  ADS  Google Scholar 

  5. A. Bernard et al., J. Moscow Phys. Soc. 8, 93–170 (1998). http://www.icdmp.pl/pf1000.html

  6. M. Krishnan, IEEE Trans. Plasma Sci. 40(12), 3189–3221 (2012)

    Article  ADS  Google Scholar 

  7. S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, S. Suryadi, W. Usada, M. Zakaullah, Am. J. Phys. 56, 62 (1988)

    Article  ADS  Google Scholar 

  8. S. Lee, Twelve Years of UNU/ICTP PFF: A Review IC, 98 (231) Abdus Salam ICTP, Miramare, Trieste, (ICTP OAA, 1998), http://eprints.ictp.it/31/

  9. S. Lee, C.S. Wong, Initiating and strengthening plasma research in developing countries. Phys.Today 59, 31–36 (2006)

    Article  ADS  Google Scholar 

  10. S. Lee in Radiation in Plasmas, vol II, ed. by B. McNamara. Proceedings of Spring College in Plasma Physics 1983, ICTP, Trieste, (World Scientific Pub Co, Singapore, 1984). ISBN 9971-966-37-9, p. 978–987

  11. S. Lee, B.C. Tan, C.S. Wong, A.C. Chew (eds.), Laser and Plasma Technology. Proceedings of First Tropical College on Applied Physics 26th Dec 1983–14th Jan 1984, (World Scientific Publishing Co., Kuala Lumpur, 1985). ISBN 9971-978-27-X, p. 38–62

  12. S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF (2014). http://www.plasmafocus.net; http://www.intimal.edu.my/school/fas/UFLF/ (archival websites)

  13. T.Y. Tou, S. Lee, K.H. Kwek, IEEE Trans. Plasma Sci. 17, 311–315 (1989)

    Article  ADS  Google Scholar 

  14. S.P. Moo, C.K. Chakrabarty, S. Lee, IEEE Trans. Plasma Sci. 19, 515–519 (1991)

    Article  ADS  Google Scholar 

  15. D.E. Potter, Nucl. Fusion 18, 813–823 (1978)

    Article  ADS  Google Scholar 

  16. A. Serban, S. Lee, Plasma Sources Sci. Technol. 6, 78 (1997)

    Article  ADS  Google Scholar 

  17. M.H. Liu, X.P. Feng, S.V. Springham, S. Lee, IEEE Trans. Plasma Sci. 26, 135 (1998)

    Article  ADS  Google Scholar 

  18. S. Lee, P. Lee, G. Zhang, X. Feng, V.A. Gribkov, M. Liu, A. Serban, T. Wong, IEEE Trans. Plasma Sci. 26, 1119 (1998)

    Article  ADS  Google Scholar 

  19. S. Lee, (2013), http://ckplee.home.nie.edu.sg/plasmaphysics/ (archival website)

  20. D. Wong, P. Lee, T. Zhang, A. Patran, T.L. Tan, R.S. Rawat, S. Lee, Plasma Sources Sci. Technol. 16, 116 (2007)

    Article  ADS  Google Scholar 

  21. V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Plasma Phys. Control. Fusion 47, 1065 (2005)

    Article  ADS  Google Scholar 

  22. L. Soto, P. Silva, J. Moreno, G. Silvester, M. Zambra, C. Pavez, L. Altamirano, H. Bruzzone, M. Barbaglia, Y. Sidelnikov, W. Kies, Braz. J. Phys. 34, 1814 (2004)

    Article  ADS  Google Scholar 

  23. H. Acuna, F. Castillo, J. Herrera, A. Postal, Int. Conf. Plasma Sci. (1996), Conf. Record, p. 127

  24. C. Moreno, V. Raspa, L. Sigaut, R. Vieytes, Appl. Phys. Lett. 89, 091502 (2006)

    Article  ADS  Google Scholar 

  25. A.E. Abdou, M.I. Ismail, A.E. Mohamed, S. Lee, S.H. Saw, R. Verma, IEEE Trans. Plasma Sci. 40(10), 2741–2744 (2012). doi:10.1109/TPS.2012.2209682

    Article  ADS  Google Scholar 

  26. S. Lee, A sequential plasma focus. IEEE Trans. Plasma Sci. 19, 912–919 (1991)

    Article  ADS  Google Scholar 

  27. S.H. Saw, M. Akel, P.C.K. Lee, S.T. Ong, S.N. Mohamad, F.D. Ismail, N.D. Nawi, K. Devi, R.M. Sabri, A.H. Bajian, J. Ali, S. Lee, J. Fusion Energ. 31, 411–417 (2012). doi:10.1007/s10894-011-9487-z

    Article  ADS  Google Scholar 

  28. S.H. Saw, P.C.K. Lee, R.S. Rawat, S. Lee, IEEE Trans. Plasma Sci. 37, 1276–1282 (2009)

    Article  ADS  Google Scholar 

  29. S. Lee, R.S. Rawat, P. Lee, S.H. Saw, J. Appl. Phys. 106, 023309 (2009)

    Article  ADS  Google Scholar 

  30. S.H. Saw, S. Lee, Energ. Power Eng. 2(1), 65–72 (2010)

    Article  Google Scholar 

  31. M. Akel, S. Al-Hawat, S.H. Saw, S. Lee, J. Fusion Energ. 29(3), 223–231 (2010)

    Article  ADS  Google Scholar 

  32. M. Akel, S. Lee, S.H. Saw, IEEE Trans. Plasma Sci. 40, 3290–3297 (2012)

    Article  ADS  Google Scholar 

  33. S. Lee, S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy, A. Singh, D. Wong, K. Devi, IEEE Trans. Plasma Sci. 39, 3196–3202 (2011)

    Article  ADS  Google Scholar 

  34. S. Lee, S.H. Saw, J. Fusion Energ. 27, 292–295 (2008)

    Article  ADS  Google Scholar 

  35. S. Lee, S.H. Saw, L. Soto, S.V. Springham, S.P. Moo, Plasma Phys. Control. Fusion 51, 075006 (2009)

    Article  ADS  Google Scholar 

  36. S. Lee, S.H. Saw, Appl. Phys. Lett. 92, 021503 (2008)

    Article  ADS  Google Scholar 

  37. S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Plasma Phys. Control. Fusion 50, 065012 (2008)

    Article  ADS  Google Scholar 

  38. S. Lee, Plasma Phys. Control. Fusion 50, 10500 (2008)

    Google Scholar 

  39. S. Lee, Appl. Phys. Lett. 95, 151503 (2009)

    Article  ADS  Google Scholar 

  40. S. Lee, S.H. Saw, J. Ali, J. Fusion Energ. 32, 42–49 (2013). doi:10.1007/s10894-012-9522-8

    Article  ADS  Google Scholar 

  41. S. Lee, S.H. Saw, J. Fusion Energ. 31, 603–610 (2012). doi:10.1007/s10894-012-9506-8

    Article  ADS  Google Scholar 

  42. S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, H. Schmidt, Appl. Phys. Lett. 92, 111501 (2008)

    Article  ADS  Google Scholar 

  43. S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, Rev. Sci. Instrum. 81, 053505 (2010)

    Article  ADS  Google Scholar 

  44. S. Lee, S.H. Saw, R.S. Rawat, P. Lee, R. Verma, A. Talebitaher, S.M. Hassan, A.E. Abdou, M. Ismail, A. Mohamed, H. Torreblanca, S. Al Hawat, M. Akel, P.L. Chong, F. Roy, A. Singh, D. Wong, K.K. Devi, J. Fusion Energ. 31, 198–204 (2012)

    Article  ADS  Google Scholar 

  45. S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, K. Devi, J. Fusion Energ. 32, 50–55 (2013). doi:10.1007/s10894-012-9521-9

    Article  ADS  Google Scholar 

  46. S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy Jr., J. Ali, S. Lee, SXR measurements in INTI PF operated in neon to identify typical (Normal N) profile for shots with good yield. IEEE Trans. Plasma Sci. 41(11), 3166–3172, (2013), ISSN 0093-3813. doi:10.1109/TPS.2013.2281333

    Google Scholar 

  47. S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, J. Fusion Energ. 30, 277–282 (2011)

    Article  ADS  Google Scholar 

  48. R.A. Behbahani, F.M. Aghamir, J. Appl. Phys. 111(4), 043304–043305 (2012)

    Article  ADS  Google Scholar 

  49. R.A. Behbahani, F.M. Aghamir, Phys. Plasmas 18, 103302 (2011). doi:10.1063/1.3647958

    Article  ADS  Google Scholar 

  50. S. Lee, S.H. Saw, Phys. Plasmas 19, 12703 (2012). doi:10.1063/1.4766744

    Article  Google Scholar 

  51. S. Lee, S.H. Saw, Phys. Plasmas 20, 062702 (2013). doi:10.1063/1.4811650

    Article  ADS  Google Scholar 

  52. S. Lee, S.H. Saw, Special Edition onFusion EnergyEnergies 2010, 3, 711–737 (2010). doi:10.3390/en3040711, Published online 12 April 2010

  53. S.H. Saw, S. Lee, Int. J. Energy Res. 35, 81–88 (2011). doi:10.1002/er.1758

    Article  Google Scholar 

  54. S. Lee, S.H. Saw, Int. J. Energ. Res. 36(15), 1366–1374 (2012)

    Article  Google Scholar 

  55. S. Lee, S.H. Saw, P. Lee, R.S. Rawat, Plasma Phys. Control. Fusion 51, 105013 (2009)

    Article  ADS  Google Scholar 

  56. S.P. Chow, S. Lee, B.C. Tan, J. Plasma Phys. 8, 21–31 (1972)

    Article  ADS  Google Scholar 

  57. S. Al-Hawat, M. Akel, S.H. Saw, S. Lee, J. Fusion Energ. 31, 13–20 (2012)

    Article  ADS  Google Scholar 

  58. S. Lee, S.H. Saw, H. Hegazy, J. Ali, V. Damideh, N. Fatis, H. Kariri, A. Khubrani, A. Mahasi, J. Fusion Energ. (2014). doi:10.1007/s10894-013-9658-1

  59. S. Lee, Aust. J. Phys. 3, 891–895 (1983)

    Article  ADS  Google Scholar 

  60. P.L. Chong, S. Lee, S.H. Saw, J. Eng. Sci. Technol. 8(1), 27–33 (2013)

    Google Scholar 

  61. S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101–1105 (1996)

    Article  ADS  Google Scholar 

  62. www.plasmafocus.net/IPFS/modelpackage/Corona%20Calculations/C1coronaIntroduction.htm

  63. L. Spitzer, Physics of fully ionised gases, in Interscience Tracts on Physics and Astronomy, 2nd rev. (Interscience Publication, New York, 1965)

  64. J.W. Shearer, Phys. Fluids 19, 1426 (1976). doi:10.1063/1.861627

    Article  ADS  Google Scholar 

  65. R. Pease, Proc. Phys. Soc. 70, 11 (1957)

    Article  ADS  MATH  Google Scholar 

  66. S. Braginskii, Zh. Eksp. Teor. Fiz. 33, 645 (1957)

    Google Scholar 

  67. K. Koshelev, N. Pereira, J. Appl. Phys. 69, 21–44 (1991)

    Article  ADS  Google Scholar 

  68. A.E. Robson, Phys. Fluid B3, 1481 (1991)

    ADS  Google Scholar 

  69. N.A.D. Khattak, Anomalous Heating (LHDI) (2011). http://www.plasmafocus.net/IPFS/modelpackage/File3Appendix.pdf

  70. J.D. Huba, 2006 Plasma Formulary pg44. http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_07.pdf

  71. V.A. Gribkov, A. Banaszak, B. Bienkowska, A.V. Dubrovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R.A. Miklaszewski, M. Paduch, M.J. Sadowski, M. Scholz, A. Szydlowski, K. Tomaszewski, J. Phys. D Appl. Phys. 40, 3592–3607 (2007)

    Article  ADS  Google Scholar 

  72. S.V. Springham et al., Nukleonika 51(1), 47–53 (2006)

  73. S.V. Springham, S. Lee, M.S. Rafique, Plasma Phys. Control. Fusion 42(10), 1023 (2000)

    Article  ADS  Google Scholar 

  74. W. Kies in Laser and Plasma Technology, ed. by S. Lee, B.C. Tan, C.S. Wong, A.C. Chew, K.S. Low, H. Ahmad, Y.H. Chen, Proceedings of Second Tropical College (World Scientific, Singapore, 1988). ISBN 9971-50-767-6, p. 86–137

  75. H. Herold in Laser and Plasma Technology, ed. by C.S. Wong, S. Lee, B.C. Tan, A.C. Chew, K.S. Low, S.P. Moo, Proceedings of Third Tropical College (World Scientific, Singapore, 1990). ISBN 981-02-0168-0, p. 21–45

  76. A. Patran, R.S. Rawat, J.M. Koh, S.V. Springham, T.L. Tan, P. Lee, S. Lee, 31st EPS Conference on Plasma Phys. London, 2004 ECA vol 28G, P-4.213 (2004)

  77. R. Verma, M.V. Roshan, F. Malik, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Plasma Sources Sci. Technol. 17(4), 045020 (2008)

    Article  ADS  Google Scholar 

  78. V. Rishi, R.S. Rawat, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Phys. Lett. A 373, 2568–2571 (2009)

    Article  ADS  Google Scholar 

  79. M. Favre, S. Lee, S.P. Moo, C.S. Wong, Plasma Sources Sci. Technol. 1(2), 122 (1992)

    Article  ADS  Google Scholar 

  80. S.L. Yap, S.H. Lee, L.K. Lim, C.S. Wong, in Proceedings International Workshop on Plasma Computations and Applications (IWPCA2008), ed. by S.H. Saw et al. (INTI Publishing House Sdn Bhd, Malaysia, 2008). ISSN 165-0284, p. 51–54

Download references

Acknowledgments

The author acknowledges students, colleagues and collaborators who have in one way or another contributed to the development of this code over the past 3 decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S. Plasma Focus Radiative Model: Review of the Lee Model Code. J Fusion Energ 33, 319–335 (2014). https://doi.org/10.1007/s10894-014-9683-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9683-8

Keywords

Navigation