Journal of Chemical Ecology

, Volume 34, Issue 5, pp 628–635

Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency


DOI: 10.1007/s10886-008-9467-6

Cite this article as:
Hiltpold, I. & Turlings, T.C.J. J Chem Ecol (2008) 34: 628. doi:10.1007/s10886-008-9467-6


Maize roots respond to feeding by larvae of the beetle Diabrotica virgifera virgifera by releasing (E)-β-caryophyllene. This sesquiterpene, which is not found in healthy maize roots, attracts the entomopathogenic nematode Heterorhabditis megidis. In sharp contrast to the emission of virtually only this single compound by damaged roots, maize leaves emit a blend of numerous volatile organic compounds in response to herbivory. To try to explain this difference between roots and leaves, we studied the diffusion properties of various maize volatiles in sand and soil. The best diffusing compounds were found to be terpenes. Only one other sesquiterpene known for maize, α-copaene, diffused better than (E)-β-caryophyllene, but biosynthesis of the former is far more costly for the plant than the latter. The diffusion of (E)-β-caryophyllene occurs through the gaseous rather than the aqueous phase, as it was found to diffuse faster and further at low moisture level. However, a water layer is needed to prevent complete loss through vertical diffusion, as was found for totally dry sand. Hence, it appears that maize has adapted to emit a readily diffusing and cost-effective belowground signal from its insect-damaged roots.


Belowground tritrophic interactions (E)-β-caryophyllene Roots Diffusion Entomopathogenic nematodes Indirect plant defense Plant–insect interactions 

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.University of Neuchâtel, Institute of Biology, FARCENeuchâtelSwitzerland

Personalised recommendations