Skip to main content
Log in

Three Time-Scales In An Extended Bonhoeffer–Van Der Pol Oscillator

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider an extended three-dimensional Bonhoeffer–van der Pol oscillator which generalises the planar FitzHugh–Nagumo model from mathematical neuroscience, and which was recently studied by Sekikawa et al. (Phys Lett A 374(36):3745–3751, 2010) and by Freire and Gallas (Phys Lett A 375:1097–1103, 2011). Focussing on a parameter regime which has hitherto been neglected, and in which the governing equations evolve on three distinct time-scales, we propose a reduction to a model problem that was formulated by Krupa et al. (J Appl Dyn Syst 7(2):361–420, 2008) as a canonical form for such systems. Based on results previously obtained in Krupa et al. (2008), we characterise completely the mixed-mode dynamics of the resulting three time-scale extended Bonhoeffer–van der Pol oscillator from the point of view of geometric singular perturbation theory, thus complementing the findings reported in Sekikawa et al. (2010). In particular, we specify in detail the mixed-mode patterns that are observed upon variation of a bifurcation parameter which is naturally obtained by combining two of the original parameters in the system, and we derive asymptotic estimates for the corresponding parameter intervals. We thereby also disprove a conjecture of Tu (SIAM J Appl Math 49(2): 331–343, 1989), where it was postulated that no stable periodic orbits of mixed-mode type can be observed in an equivalent extension of the Bonhoeffer–van der Pol equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. In: Bifurcation Theory and Spatio-Temporal Pattern Formation, vol. 49 of Fields Institute Communications, pp. 39–63. American Mathematical Society, Providence, RI, (2006)

  2. Curtu, R., Rubin, J.: Interaction of canard and singular Hopf mechanisms in a neural model. SIAM J. Appl. Dyn. Syst. 10(4), 1443–1479 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dumortier, F.: Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), vol. 408 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 19–73. Kluwer Academic Publisher, Dordrecht (1993)

  5. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 121(577), 1–100 (1996) (With an appendix by Cheng Zhi Li)

    Google Scholar 

  6. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Freire, J.G., Gallas, J.A.C.: Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer–van der Pol and the Fitzhugh-Nagumo models of excitable systems. Phys. Lett. A 375, 1097–1103 (2011)

    Article  MATH  Google Scholar 

  8. Guckenheimer, J.: Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst. 7(4), 1355–1377 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Computational Neuroscience. MIT Press, Cambridge, MA (2007)

    Google Scholar 

  10. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994) Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin, (1995)

  11. Koper, M.T.M.: Bifurcations of mixed-mode oscillations in a three-variable autonomous van der Pol-Duffing model with a cross-shaped phase diagram. Phys. D 80(1–2), 72–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions. SIAM J. Math. Anal 33(2), 286–314 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248(12), 2841–2888 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krupa, M., Popović, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7(2), 361–420 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Krupa, M., Popović, N., Kopell, N., Rotstein, H.G.: Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18(1), 015106 (2008)

    Google Scholar 

  16. Olver, F.W.J.: Asymptotics and Special Functions. AKP Classics. A K Peters Ltd., Wellesley, MA, (1997). Reprint of the original [Academic Press, New York, 1974]

  17. Sekikawa, M., Inaba, N., Yoshinaga, T., Hikihara, T.: Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator. Phys. Lett. A 374(36), 3745–3751 (2010)

    Article  MATH  Google Scholar 

  18. Shimizu, K., Yuto, S., Sekikawa, M., Inaba, N.: Complex mixed-mode oscillations in a Bonhoeffer–van der Pol oscillator under weak periodic perturbation. Phys. D 241(18), 1518–1526 (2012)

    Article  MATH  Google Scholar 

  19. Szmolyan, P., Wechselberger, M.: Canards in \(\mathbb{R}^3\). J. Differ. Equ. 177(2), 419–453 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Szmolyan, P., Wechselberger, M.: Relaxation oscillations in \(\mathbb{R}^3\). J. Differ. Equ. 200(1), 69–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tu, S.T.: A phase-plane analysis of bursting in the three-dimensional Bonhoeffer–van der Pol equations. SIAM J. Appl. Math. 49(2), 331–343 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wechselberger, M.: Existence and bifurcation of canards in \(\mathbb{R}^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst., 4(1), 101–139 (2005) (electronic)

  23. Wilson, C.J., Callaway, J.C.: Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J. Neurophysiol. 83(5), 3084–3100 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors’ research was supported by the Research Foundation Flanders (FWO) under grant number G.0939.10N. Moreover, E. K. acknowledges support from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Maesschalck, P., Kutafina, E. & Popović, N. Three Time-Scales In An Extended Bonhoeffer–Van Der Pol Oscillator. J Dyn Diff Equat 26, 955–987 (2014). https://doi.org/10.1007/s10884-014-9356-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9356-3

Keywords

Mathematics Subject Classification (2010)

Navigation