Skip to main content
Log in

Graph coloring by multiagent fusion search

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A multiagent fusion search is presented for the graph coloring problem. In this method, each of agents performs the fusion search, involving a local search working in a primary exploitation role and a recombination search in a navigation role, with extremely limited memory and interacts with others through a decentralized protocol, thus agents are able to explore in parallel as well as to achieve a collective performance. As the knowledge components implemented with available structural information and in formalized forms, the Quasi-Tabu local search and grouping-based recombination rules are especially useful in addressing neutrality and ruggedness of the problem landscape. The new method has been tested on some hard benchmark graphs, and has been shown competitive in comparison with several existing algorithms. In addition, the method provides new lower bound solutions when applied to two large graphs. Some search characteristics of the proposed method is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JR (2005) Human symbol manipulation within an integrated cognitive architecture. Cogn Sci 29(3):313–341

    Article  Google Scholar 

  • Bandura A (1977) Social learning theory. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Barbosa VC, Assis CAG, do Nascimento JO (2004) Two novel evolutionary formulations of the graph coloring problem. J Comb Optim 8(1):41–63

    Article  MATH  MathSciNet  Google Scholar 

  • Barnier N, Brisset P (2004) Graph coloring for air traffic flow management. Ann Oper Res 130(1–4):163–178

    Article  MATH  MathSciNet  Google Scholar 

  • Boese KD, Kahng AB, Muddu S (1994) A new adaptive multi-start technique for combinatorial global optimizations. Oper Res Lett 16:101–113

    Article  MATH  MathSciNet  Google Scholar 

  • Boettcher S, Percus AG (2004) Extremal optimization at the phase transition of the three-coloring problem. Phys Rev E 69(6):Art066703

    Article  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, London

    MATH  Google Scholar 

  • Brélaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):251–256

    Article  MATH  Google Scholar 

  • Bui TN, Nguyen TH, Patel CM, Phan K-AT (2008) An ant-based algorithm for coloring graphs. Discrete Appl Math 156(2):190–200

    Article  MATH  MathSciNet  Google Scholar 

  • Cheeseman P, Kanefsky B, Taylor WM (1991) Where the really hard problems are. In: International joint conference on artificial intelligence, San Mateo, CA, pp 331–337

  • Chiarandini M (2005) Stochastic local search methods for highly constrained combinatorial optimisation problems. PhD thesis, Darmstadt University of Technology, Germany

  • Cioffi-Revilla C (2002) Invariance and universality in social agent-based simulations. Proc Natl Acad Sci USA 99(3):7314–7316

    Article  Google Scholar 

  • Coudert O (1997) Exact coloring of real-life graphs is easy. In: Design automation conference, San Francisco, CA, USA, pp 121–126

  • Culberson JC, Luo F (1996) Exploring the k-colorable landscape with iterated greedy. In: Cliques, coloring, and satisfiability: second DIMACS implementation challenge. Am Math Soc, Providence, pp 245–284

    Google Scholar 

  • Curran D, O’Riordan C (2006) Increasing population diversity through cultural learning. Adapt Behav 14(4):315–338

    Article  Google Scholar 

  • Cutello V, Nicosia G, Pavone M (2007) An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. J Comb Optim 14(1):9–33

    Article  MATH  MathSciNet  Google Scholar 

  • Di Blas A, Jagota A, Hughey R (2002) Energy function-based approaches to graph coloring. IEEE Trans Neural Netw 13(1):81–91

    Article  Google Scholar 

  • Dietterich TG (1986) Learning at the knowledge level. Mach Learn 1:287–316

    Google Scholar 

  • Dorne R, Hao JK (1998) A new genetic local search algorithm for graph coloring. In: International conference on parallel problem solving from nature, Amsterdam, NL, pp 745–754

  • Edgington T, Choi B, Henson K, Raghu TS, Vinze A (2004) Adopting ontology to facilitate knowledge sharing. Commun ACM 47(11):85–90

    Article  Google Scholar 

  • Eppstein D (2003) Small maximal independent sets and faster exact graph coloring. J Graph Algorithms Appl 7(2):131–140

    MATH  MathSciNet  Google Scholar 

  • Erben W (2000) Grouping genetic algorithm for graph colouring and exam timetabling. In: International conference on practice and theory of automated timetabling, Konstanz, Germany, pp 132–156

  • Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J Heuristics 2(1):5–30

    Article  Google Scholar 

  • Fleurent C, Ferland JA (1996) Genetic and hybrid algorithms for graph coloring. Ann Oper Res 63:437–464

    Article  MATH  Google Scholar 

  • Fragaszy D, Visalberghi E (2004) Socially biased learning in monkeys. Learn Behav 32(1):24–35

    Google Scholar 

  • Frank J, Cheeseman P, Stutz J (1997) When gravity fails: local search topology. J Artif Intell Res 7:249–281

    MATH  MathSciNet  Google Scholar 

  • Funabiki N, Higashino T (2000) A minimal-state processing search algorithm for graph coloring problems. IEICE Trans Fundam Electron Commun Comput Sci E 83A(7):1420–1430

    Google Scholar 

  • Galef BG (1995) Why behaviour patterns that animals learn socially are locally adaptive. Anim Behav 49(5):1325–1334

    Article  Google Scholar 

  • Galinier P, Hao J-K (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3(4):379–397

    Article  MATH  MathSciNet  Google Scholar 

  • Galinier P, Hertz A (2006) A survey of local search methods for graph coloring. Comput Oper Res 33(9):2547–2562

    Article  MATH  MathSciNet  Google Scholar 

  • Galinier P, Hertz A, Zufferey N (2008) An adaptive memory algorithm for the k-colouring problem. Discrete Appl Math 156(2):267–279

    Article  MATH  MathSciNet  Google Scholar 

  • Gebremedhin AH, Manne F, Pothen A (2005) What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev 47(4):629–705

    Article  MATH  MathSciNet  Google Scholar 

  • Gigerenzer G, Goldstein DG (1996) Reasoning the fast and frugal way: models of bounded rationality. Psych Rev 103(4):650–669

    Article  Google Scholar 

  • Glass CA, Prugel-Bennett A (2003) Genetic algorithm for graph coloring: exploration of Galinier and Hao’s algorithm. J Comb Optim 7(3):229–236

    Article  MATH  MathSciNet  Google Scholar 

  • Glenberg AM (1997) What memory is for. Behav Brain Sci 20(1):1–55

    Google Scholar 

  • Gomes CP, Selman B (2001) Algorithm portfolios. Artif Intell 126(1–2):43–62

    Article  MATH  MathSciNet  Google Scholar 

  • Hamiez J-P, Hao J-K (2001) Scatter search for graph coloring. In: International conference on artificial evolution, Le Creusot, France, pp 168–179

  • Hertz A, de Werra D (1987) Using tabu search techniques for graph coloring. Computing 39:345–351

    Article  MATH  MathSciNet  Google Scholar 

  • Hoos HH (1999) On the run-time behaviour of stochastic local search algorithms for SAT. In: National conference on artificial intelligence, Orlando, FL, pp 661–666

  • Hoos HH, Stützle T (1998) Evaluating Las Vegas algorithms—pitfalls and remedies. In: Conference on uncertainty in artificial intelligence, Madison, WI, pp 238–245

  • Johnson DS, Aragon CR, McGeoch LA, Schevon C (1991) Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper Res 39(3):378–406

    Article  MATH  Google Scholar 

  • Johnson DS, Trick MA (eds) (1996) Cliques, coloring, and satisfiability: second DIMACS implementation challenge. Am Math Soc, Providence

    MATH  Google Scholar 

  • Joslin DE, Clements DP (1999) “Squeaky wheel” optimization. J Artif Intell Res 10:353–373

    MATH  MathSciNet  Google Scholar 

  • Khanna S, Linial N, Safra S (2000) On the hardness of approximating the chromatic number. Combinatorica 20(3):393–415

    Article  MATH  MathSciNet  Google Scholar 

  • Kirovski D (1998) Efficient coloring of a large spectrum of graphs. In: Design automation conference, San Francisco, CA, USA, pp 427–432

  • Lerman K, Galstyan A (2003) Agent memory and adaptation in multi-agent systems. In: International conference on autonomous agents and multi-agent systems, Melbourne, Australia, pp 797–803

  • Liu J, Han J, Tang YY (2002) Multi-agent oriented constraint satisfaction. Artif Intell 136(1):101–144

    Article  MATH  MathSciNet  Google Scholar 

  • Liu J, Jin X, Tsui K-C (2005) Autonomy Oriented Computing (AOC): From problem solving to complex systems modeling. Kluwer Academic, Dordrecht

    Google Scholar 

  • Liu J, Tsui K-C (2006) Toward nature-inspired computing. Commun ACM 49(10):59–64

    Article  Google Scholar 

  • Mehrotra A, Trick M (1996) A column generation approach for graph coloring. INFORMS J Comput 8(4):344–354

    Article  MATH  Google Scholar 

  • Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4):337–352

    Article  Google Scholar 

  • Mezard M, Palassini M, Rivoire O (2005) Landscape of solutions in constraint satisfaction problems. Phys Rev Lett 95(20):Art200202

    Article  Google Scholar 

  • Morgenstern C (1996) Distributed coloration neighborhood search. In: Cliques, coloring, and satisfiability: second DIMACS implementation challenge. Am Math Soc, Providence, pp 335–358

    Google Scholar 

  • Mumford CL (2006) New order-based crossovers for the graph coloring problem. In: International conference on parallel problem solving from nature, Reykjavik, Iceland, pp 880–889

  • Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Nowicki E (1996) A fast tabu search algorithm for the permutation flow shop problem. Eur J Oper Res 91:160–175

    Article  MATH  Google Scholar 

  • Reeves CR, Yamada T (1998) Genetic algorithms, path relinking, and the flowshop sequencing problem. Evol Comput 6(1):45–60

    Article  Google Scholar 

  • Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44(1):3–54

    Article  MATH  MathSciNet  Google Scholar 

  • Schuurmans D, Southey F (2001) Local search characteristics of incomplete SAT procedures. Artif Intell 132(2):121–150

    Article  MATH  MathSciNet  Google Scholar 

  • Selman B, Kautz HA (1993) An empirical study of greedy local search for satisfiability testing. In: National conference on artificial intelligence, Washington, DC, USA, pp 46–51

  • Selman B, Kautz HA, Cohen B (1994) Noise strategies for improving local search. In: National conference on artificial intelligence, Seattle, WA, pp 337–343

  • Smith MD, Ramsey N, Holloway G (2004) A generalized algorithm for graph-coloring register allocation. ACM SIGPLAN Not 39(6):277–288

    Article  Google Scholar 

  • Stone P, Veloso M (2000) Multiagent systems: a survey from a machine learning perspective. Auton Robots 8(3):345–383

    Article  Google Scholar 

  • Trick MA, Yildiz H (2007) A large neighborhood search heuristic for graph coloring. In: International conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems, Brussels, Belgium, pp 346–360

  • Walsh T (2001) Search on high degree graphs. In: International joint conference on artificial intelligence, Seattle, Washington, USA, pp 266–274

  • Weyns D, Holvoet T (2005) On the role of environments in multiagent systems. Informatica 29:409–421

    Google Scholar 

  • Xie X-F, Liu J (2005) A compact multiagent system based on autonomy oriented computing. In: IEEE/WIC/ACM international conference on intelligent agent technology, Compiègne, France, pp 38–44

  • Xie X-F, Liu J (2006) How autonomy oriented computing (AOC) tackles a computationally hard optimization problem. In: International joint conference on autonomous agents and multiagent systems, Hakodate, Japan, pp 646–653

  • Xie X-F, Zhang W-J (2004) SWAF: swarm algorithm framework for numerical optimization. In: Genetic and evolutionary computation conference, Seattle, WA, pp 238–250

  • Zhang W (2004) Configuration landscape analysis and backbone guided local search. Artif Intell 158(1):1–26

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, XF., Liu, J. Graph coloring by multiagent fusion search. J Comb Optim 18, 99–123 (2009). https://doi.org/10.1007/s10878-008-9140-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-008-9140-6

Keywords

Navigation