, Volume 27, Issue 2, pp 107-111

Respiratory change in ECG-wave amplitude is a reliable parameter to estimate intravascular volume status

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Electrocardiogram (ECG) is a standard type of monitoring in intensive care medicine. Several studies suggest that changes in ECG morphology may reflect changes in volume status. The “Brody effect”, a theoretical analysis of left ventricular (LV) chamber size influence on QRS-wave amplitude, is the key element of this phenomenon. It is characterised by an increase in QRS-wave amplitude that is induced by an increase in ventricular preload. This study investigated the influence of changes in intravascular volume status on respiratory variations of QRS-wave amplitudes (ΔECG) compared with respiratory pulse pressure variations (ΔPP), considered as a reference standard. In 17 pigs, ECG and arterial pressure were recorded. QRS-wave amplitude was measured from the Biopac recording to ensure that in all animals ECG electrodes were always at the same location. Maximal QRS amplitude (ECGmax) and minimal QRS amplitude (ECGmin) were determined over one respiratory cycle. ΔECG was calculated as 100 × [(ECGmax − ECGmin)/(ECGmax + ECGmin)/2]. ΔECG and ΔPP were simultaneously recorded. Measurements were performed at different time points: during normovolemic conditions, after haemorrhage (25 mL/kg), and following re-transfusion (25 mL/kg) with constant tidal volume (10 mL/kg) and respiration rate (15 breath/min). At baseline, ΔPP and ΔECG were both <12 %. ΔPP were significantly correlated with ΔECG (r2 = 0.89, p < 0.001). Volume loss induced by haemorrhage increased significantly ΔPP and ΔECG. Moreover, during this state, ΔPP were significantly correlated with ΔECG (r2 = 0.86, p < 0.001). Re-transfusion significantly decreased ΔPP and ΔECG, and ΔPP were significantly correlated with ΔECG (r2 = 0.90, p < 0.001). The observed correlations between ΔPP and ΔECG at each time point of the study suggest that ΔECG is a reliable parameter to estimate the changes in intravascular volume status and provide experimental confirmation of the “Brody effect.”