Journal of Cluster Science

, Volume 24, Issue 2, pp 459–470

Time-Dependent Density Functional Theory Study on Hydrogen and Dihydrogen Bonding in Electronically Excited State of 2-Pyridone–Borane–Trimethylamine Cluster

Original Paper

DOI: 10.1007/s10876-013-0572-5

Cite this article as:
Wei, N., Hamza, A., Hao, C. et al. J Clust Sci (2013) 24: 459. doi:10.1007/s10876-013-0572-5

Abstract

In this work, the intermolecular dihydrogen and hydrogen bonding interactions in electronically excited states of a 2-pyridone (2PY)–borane–trimethylamine (BTMA) cluster have been theoretically studied using time-dependent density functional theory method. Our computational results show that the S1 state of 2PY–BTMA cluster is a locally excited state, in which only 2PY moiety is electronically excited. The theoretical infrared (IR) spectra of the 2PY–BTMA cluster demonstrate that the N–H stretching vibrational mode is slightly blue-shifted upon the electronic excitation. Moreover, the computed IR spectrum of the 2PY–BTMA cluster exhibits no carbonyl character due to the extension of the C=O bond length in the S1 state. However, the N–H bond is shortened slightly upon photoexcitation. At the same time, the H···H and H···O distances are obviously lengthened in the S1 sate by comparison with those in ground state. In addition, the electron density of the carbonyl oxygen is diminished due to the electronic excitation. Consequently, the proton acceptor ability of carbonyl oxygen is decreased in the electronic excited state. As a result, it is demonstrated that the intermolecular dihydrogen and hydrogen bonds are significantly weakened in the electronically excited state.

Keywords

Hydrogen bonding Dihydrogen bonding Electronically excited state Vibrational modes Red-shift Blue-shift 

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  3. 3.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA