, Volume 21, Issue 3, pp 379-396

Routes to Higher Nuclearity Mixed-Metal Carbonyl Clusters Using the [Rh(η5-C5Me5)(NCMe)3]2+ Dication as a Building Block

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Reaction of the [Rh(η5-C5Me5)(NCMe)3]2+ (1) dication with the hexaosmium [Os6(CO)17]2− (2) dianion leads to the initial formation of [Os6(CO)17Rh(η5-C5Me5)] (3). This cluster readily adds CO to form [Os6(CO)18Rh(η5-C5Me5)] (4) which has been characterised crystallographically. 3 also adds dihydrogen to give [Os6H2(CO)17Rh(η5-C5Me5)] (5) and undergoes a substitution reaction with PPh3 to form [Os6(CO)16(PPh3)Rh(η5-C5Me5)] (6). With the [Ru6(CO)18]2− (7) dianion, [Rh(η5-C5Me5)(NCMe)3]2+ (1) reacts to form three mixed-metal clusters [Ru5(CO)15Rh(η5-C5Me5)] (8), [Ru6(CO)18Rh(η5-C5Me5)] (9) and [Ru6(CO)18Rh25-C5Me5)2] (10). The clusters have been characterised spectroscopically and the structures of 8 and 10 have been confirmed crystallographically. The cluster 8 undergoes a substitution reaction with P(OMe)3 to form the disubstituted product [Ru5(CO)13(P(OMe)3)2Rh((η5-C5Me5)] (11) which has also been characterised crystallographically.

This paper is dedicated to Professor Malcolm H. Chisholm FRS in recognition of his many seminal contributions to chemistry.