Skip to main content

Advertisement

Log in

Immunoglobulin G from Breast Cancer Patients Regulates MCF-7 Cells Migration and MMP-9 Activity by Stimulating Muscarinic Acetylcholine Receptors

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

We have previously reported the expression of muscarinic acetylcholine receptors (mAChR) in human breast tumors. The activation of these receptors triggered tumor cell proliferation. Considering that invasion and metastasis is the major cause of death in cancer, we investigated the action of autoantibodies against mAChR derived from breast cancer patients in stage I (T1N0Mx-IgG) on MCF-7 cells migration and metalloproteinase-9 (MMP-9) activity. We also analyzed the participation of phospholipase C/nitric oxide synthase/protein kinase C pathway.

Methods

Immunoglobulin G (IgG) was purified by chromatography in protein G-agarose from blood samples of breast cancer patients obtained under informed consent. Migration was assayed by an in vitro wound assay. MMP-9 activity was quantified by zymography.

Results

T1N0Mx-IgG promoted tumor cell migration and increased MMP9 activity mimicking the action of the muscarinic agonist carbachol. This effect was reduced not only by the presence of atropine but also by 4-DAMP or tropicamide, antagonists for M3 and M4 mAChR subtypes respectively. The actions of T1N0Mx-IgG and carbachol on MCF-7 cells, involved the participation of phospholipase C/nitric oxide synthase/protein kinase C pathway.

Conclusions

IgG from breast cancer patients in stage I could be promoting tumor progression by regulating migration and MMP-9 activity in tumor cells via mAChR activation. The presence of these autoantibodies could be determining the prognosis of breast cancer in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jakóbisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett. 2003;90:103–22.

    Article  PubMed  Google Scholar 

  2. Hansen MH, Nielsen H, Ditzel HJ. The tumor infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc Natl Acad Sci USA. 2001;98:12659–64.

    Article  PubMed  CAS  Google Scholar 

  3. Pagès F, Galon J, Fridman WH. The essential role of the in situ immune reaction in human colorectal cancer. J Leuk Biol. 2008;84:981–7.

    Article  Google Scholar 

  4. Sogn JA. Tumor Immunology: the glass is half full. Immunity. 1998;9:757–63.

    Article  PubMed  CAS  Google Scholar 

  5. Abken H, Hombach A, Heuser C, Kronfeld K, Seliger B. Tuning tumor-specific T cell activation: a matter of costimulation? Trends Immunol. 2002;23:240–5.

    Article  PubMed  CAS  Google Scholar 

  6. Zier K, Gansbacher B, Salvadori S. Preventing abnormalities in signal transduction of T cells in cancer: the promise of cytokine gene therapy. Immunol Today. 1996;17:39–45.

    Article  PubMed  CAS  Google Scholar 

  7. Fiszman GL, Sales ME. Autoantibodies against muscarinic receptors in breast cancer. Agonizing tumor growth? Curr Immunol Rev. 2008;4:176–82.

    Article  CAS  Google Scholar 

  8. Eglen RM. Muscarinic receptor subtype: pharmacology and physiology. Prog Med Chem. 2005;43:105–36.

    Article  PubMed  CAS  Google Scholar 

  9. Peraza-Cruces K, Gutiérrez-Guédez L, Castañeda Perozo D, Lankford CR, Rodríguez-Bonfante C, Bonfante-Cabarcas R. Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro. Braz J Med Biol Res. 2008;41:796–803.

    Article  PubMed  CAS  Google Scholar 

  10. Koch HJ, Haas S, Jürgens T. On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr Med Chem. 2005;12:2915–21.

    Article  PubMed  CAS  Google Scholar 

  11. Shah N, Khurana S, Cheng K, Raufman JP. Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol. 2009;296:C221–32.

    Article  PubMed  CAS  Google Scholar 

  12. Marinissen MJ, Gutkind JS. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci. 2001;22:368–76.

    Article  PubMed  CAS  Google Scholar 

  13. Español AJ, de la Torre E, Fiszman GL, Sales ME. Role of non neuronal cholinergic system in breast cancer progression. Life Sci. 2007;80:2281–5.

    Article  PubMed  Google Scholar 

  14. Paleari L, Grozzio A, Cesario A, Russo P. The cholinergic system in cancer. Semin Cancer Biol. 2008;18:211–7.

    Article  PubMed  CAS  Google Scholar 

  15. Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B. The sole of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal. 2010;8:1–8.

    Article  Google Scholar 

  16. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  PubMed  CAS  Google Scholar 

  17. Negroni MP, Fiszman GL, Azar ME. Cresta Morgado C, Español AJ, Pelegrina LT, de la Torre E, Sales ME. Immunoglobulin G from breast cancer patients in stage I stimulates muscarinic acetylcholine receptors in MCF-7 cells and induces proliferation. Participation of nitric oxide synthase-derived nitric oxide. J Clin Immunol. 2010;30:474–84.

    Article  PubMed  CAS  Google Scholar 

  18. Chen TR. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977;104:255–62.

    Article  PubMed  CAS  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  20. Wessler I, Kilbinger H, Bittinger F, Kirpatrik CJ. The non neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci. 2003;72:2055–61.

    Article  PubMed  CAS  Google Scholar 

  21. Wessler I, Kirpatrik CJ, Racke K. Non neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. 1998;77:59–79.

    Article  PubMed  CAS  Google Scholar 

  22. Fiszman GL, Middonno MC, de la Torre E, Farina M, Español AJ, Sales ME. Activation of muscarinic cholinergic receptors induces MCF-7 cells proliferation and angiogenesis by stimulating nitric oxide synthase activity. Cancer Biol Ther. 2007;6:1106–13.

    Article  PubMed  CAS  Google Scholar 

  23. Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68:3573–8.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang S, Togo S, Minakata K, Gu T, Ohashi R, Tajima K, et al. Distinct roles of cholinergic receptors in small cell lung cancer cells. Anticancer Res. 2010;30:97–106.

    PubMed  Google Scholar 

  25. Chernyavsky AI, Nguyen VT, Arredondo J, Ndoye A, Zia S, Wess J, et al. The M4 muscarinic receptor-selective effects on keratinocyte crawling locomotion. Life Sci. 2003;72:2069–73.

    Article  PubMed  CAS  Google Scholar 

  26. Desmetz C, Cortijo C, Mange A, Solassol J. Humoral response to cancer as a tool for biomarker discovery. J Proteome. 2009;72:982–8.

    Article  CAS  Google Scholar 

  27. Desmetz C, Bascoul-Mollevi C, Rochaix P, Lamy PJ, Kramar A, Rouanet P, et al. Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin Cancer Res. 2009;15:4733–41.

    Article  PubMed  CAS  Google Scholar 

  28. Fiszman G, Cattaneo V, de la Torre E, Español A, Colombo LL, de Lustig Sacerdote E, et al. Muscarinic receptors autoantibodies purified from mammary adenocarcinoma bearing mice sera stimulate tumor progression”. Int Immunopharmacol. 2006;6:1323–30.

    Article  PubMed  CAS  Google Scholar 

  29. Chiu CC, Chen BH, Hour TC, Chiang WF, Wu YJ, Chen CY, et al. Betel quid extract promotes oral cancer cell migration by activating a muscarinic M4 receptor-mediated signaling cascade involving SFKs and ERK1/2. Biochem Biophys Res Commun. 2010;399:60–5.

    Article  PubMed  CAS  Google Scholar 

  30. Rocha Duarte Cintra J, Bustamante Teixeira MT, Wolp Diniz R, Gonçalves Junior H, Marinho Florentino T, de Freitas Fialho G, et al. Immunohistochemical profile and clinical-pathological variables in breast cancer. Rev Assoc Med Bras. 2012;58:178–87.

    Article  Google Scholar 

  31. Schulze W, Kunze R, Wallukat G. Pathophysiological role of autoantibodies against G-protein-coupled receptors in the cardiovascular system. Exp Clin Cardiol. 2005;10:170–2.

    PubMed  CAS  Google Scholar 

  32. Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y, et al. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res. 2010;70:2224–34.

    Article  PubMed  CAS  Google Scholar 

  33. Houssami N, Cheung MN, Dixon JM. Fibroadenoma of the breast. Med J Aust. 2001;174:185–8.

    PubMed  CAS  Google Scholar 

  34. You J, Mi D, Zhou X, Qiao L, Zhang H, Zhang X, et al. A positive feedback between activated extracellularly regulated kinase and cyclooxygenase/lipoxygenase maintains proliferation and migration of breast cancer cells. Endocrinology. 2009;150:1607–17.

    Article  PubMed  CAS  Google Scholar 

  35. Sales ME. Tumor growth is stimulated by muscarinic receptors agonism. role of autoantibodies from breast cancer patients. Immunol Endocr Metabol Agents Med Chem. 2012; 3:208–15.

    Google Scholar 

Download references

Acknowledgments

The authors want to thank Mrs. María Ester Castro for her excellent technical assistance. This work was supported by grants from the University of Buenos Aires (UBACYT M064) and from the National Agency for Scientific and Technology Promotion (ANPCyT) (PICT 2006-485). Drs. Gabriela Lombardi and María Elena Sales are established investigators at the National Research Council of Argentina (CONICET). Dr. Laura T. Pelegrina is a fellow from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María E. Sales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelegrina, L.T., Lombardi, M.G., Fiszman, G.L. et al. Immunoglobulin G from Breast Cancer Patients Regulates MCF-7 Cells Migration and MMP-9 Activity by Stimulating Muscarinic Acetylcholine Receptors. J Clin Immunol 33, 427–435 (2013). https://doi.org/10.1007/s10875-012-9804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9804-y

Keywords

Navigation