Skip to main content

Advertisement

Log in

Immunoglobulin G from Breast Cancer Patients in Stage I Stimulates Muscarinic Acetylcholine Receptors in MCF7 Cells and Induces Proliferation. Participation of Nitric Oxide Synthase-Derived Nitric Oxide

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Muscarinic acetylcholine receptors (mAChR) belong to the G-protein-coupled receptor family and are extensively expressed in most cells in mammals. We had reported the expression of mAChR in murine and human breast tumors.

Methods

The presence of antibodies in the sera of patients with different tumors directed against self-proteins has been recently described. In this work, we investigated the presence of autoantibodies against mAChR in the sera of breast cancer patients in stage I (T1N0Mx-IgG). IgG purification was performed by affinity chromatography in protein G-agarose. We also studied the ability of these antibodies to modulate the proliferation of MCF-7 breast tumor cells by the MTS colorimetric assay. The ability of T1N0Mx-IgG to stimulate muscarinic signaling pathway via nitric oxide synthase was tested by Griess reaction.

Results

We demonstrated M3 and M4 receptors expression in MCF-7 cells. T1N0Mx-IgG promotes cell proliferation, mimicking the action of the muscarinic agonist carbachol. This effect was preferentially due to M3 receptor activation in tumor cells via phospholipase C-induced nitric oxide liberation by calcium-dependent nitric oxide synthases. IgG from control patients was unable to produce this effect.

Discussion

IgG from patients with breast cancer in early stages could be promoting tumor progression by muscarinic activation, and its presence could be determining the prognosis of this illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jakóbisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett. 2003;90:103–22.

    Article  PubMed  Google Scholar 

  2. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–66.

    Article  CAS  PubMed  Google Scholar 

  3. Witkin SS. Heat shock protein expression and immunity: relevance to gynecologic oncology. Eur J Gynaecol Oncol. 2001;22:249–56.

    CAS  PubMed  Google Scholar 

  4. Antoine JC, Absi L, Honnorat J, Boulesteix JM, de Brouker T, Vial C, et al. Antiamphiphysin antibodies are associated with various paraneoplastic syndromes and tumors. Arch Neurol. 1999;56:151–2.

    Article  Google Scholar 

  5. Fernandez Madrid F, Karvonen RL, Ensley J, Kraut M, Granda JL, Alansari H, et al. Spectra of antinuclear antibodies in patients with squamous cell carcinoma of the lung and of the head and neck. Cancer Detect Prev. 2005;29:59–65.

    Article  PubMed  Google Scholar 

  6. Hansen MH, Nielsen H, Ditzel HJ. The tumor infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc Natl Acad Sci USA. 2001;98:12659–64.

    Article  CAS  PubMed  Google Scholar 

  7. Eglen RM. Muscarinic receptor subtype: pharmacology and physiology. Prog Med Chem. 2005;43:105–36.

    Article  CAS  PubMed  Google Scholar 

  8. Peraza-Cruces K, Gutiérrez-Guédez L, Castañeda Perozo D, Lankford CR, Rodríguez-Bonfante C, Bonfante-Cabarcas R. Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro. Braz J Med Biol Res. 2008;41:796–803.

    Article  CAS  PubMed  Google Scholar 

  9. Koch HJ, Haas S, Jürgens T. On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr Med Chem. 2005;12:2915–21.

    Article  CAS  PubMed  Google Scholar 

  10. Sogn JA. Tumor immunology: the glass is half full. Immunity. 1998;9:757–63.

    Article  CAS  PubMed  Google Scholar 

  11. Abken H, Hombach A, Heuser C, Kronfeld K, Seliger B. Tuning tumor-specific T-cell activation: a matter of costimulation? Trends Immunol. 2002;23:240–5.

    Article  CAS  PubMed  Google Scholar 

  12. Paleari L, Grozzio A, Cesario A, Russo P. The cholinergic system in cancer. Semin Cancer Biol. 2008;18:211–7.

    Article  CAS  PubMed  Google Scholar 

  13. Español AJ, Sales ME. Different muscarinic receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines. Int J Mol Med. 2004;13:311–9.

    PubMed  Google Scholar 

  14. Fiszman G, Cattaneo V, de la Torre E, Español A, Colombo LL, Sacerdote de Lustig E, et al. Muscarinic receptors autoantibodies purified from mammary adenocarcinoma bearing mice sera stimulate tumor progression. Int Immunopharmac. 2006;6:1323–30.

    Article  CAS  Google Scholar 

  15. Chen TR. In situ detection of micoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977;104:255–62.

    Article  CAS  PubMed  Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  17. Granger DL, Hibbs JB, Perfect JR, Durack DT. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990;85:264–73.

    Article  CAS  PubMed  Google Scholar 

  18. Español AJ, Eiján AM, Mazzoni EO, Davel L, Jasnis MA, Lustig ES, et al. Nitric oxide synthase, arginase and cyclooxygenase are involved in muscarinic receptors activation in different murine mammary adenocarcinoma cell lines. Int J Mol Med. 2002;9:651–7.

    PubMed  Google Scholar 

  19. Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, et al. Release of non-neuronal acetylcholine from isolated human placenta is mediated by organic cation transporters. Br J Pharmacol. 2001;134:951–6.

    Article  CAS  PubMed  Google Scholar 

  20. Shah N, Khurana S, Cheng K, Raufman JP. Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol. 2009;296:221–32.

    Article  Google Scholar 

  21. Fiszman GL, Sales ME. Antibodies against muscarinic receptors in breast cancer: agonizing tumor growth. Curr Immunol Rev. 2008;4:1–7.

    Article  Google Scholar 

  22. Hernandez CC, Nascimento JH, Chaves EA, Costa PC, Masuda MO, Kurtenbach E, et al. Autoantibodies enhance agonist action and binding to cardiac muscarinic receptors in chronic Chagas’ disease. J Recept Signal Transduct Res. 2008;28:375–401.

    Article  CAS  PubMed  Google Scholar 

  23. Wu Y, Li MT, Zhao Y, Feng S, Su L, Dong Y. The clinical significance of autoantibodies against acetylcholine muscarinic 3 receptor in primary Sjögren’s syndrome. Zhonghua Nei Ke Za Zhi. 2008;47:563–5.

    CAS  PubMed  Google Scholar 

  24. Sales ME, Español AJ, Sterin-Borda L, Borda E, de Bracco MM. Protein kinase C regulates NO-cGMP pathway in muscarinic receptor activation by HIV + -IgA. Int J Mol Med. 1999;3:633–7.

    CAS  PubMed  Google Scholar 

  25. Fernández Madrid F. Autoantibodies in breast cancer sera: candidate biomarkers and reporters of tumorigenesis. Cancer Lett. 2005;230:187–98.

    Article  PubMed  Google Scholar 

  26. Schulze W, Kunze R, Wallukat G. Pathophysiological role of autoantibodies against G-protein-coupled receptors in the cardiovascular system. Exp Clin Cardiol. 2005;10:170–2.

    CAS  PubMed  Google Scholar 

  27. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbé-Jullié C, et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem. 2002;277:34666–73.

    Article  CAS  PubMed  Google Scholar 

  28. Williams CL. Muscarinic signaling in carcinoma cells. Life Sci. 2003;72:2173–82.

    Article  CAS  PubMed  Google Scholar 

  29. Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J, et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res. 2008;68:4693–700.

    Article  CAS  PubMed  Google Scholar 

  30. Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68:3573–8.

    Article  CAS  PubMed  Google Scholar 

  31. Rimmaudo LE, de la Torre E, Sacerdote de Lustig E, Sales ME. Muscarinic receptors are involved in LMM3 tumor cell proliferation and angiogenesis. Biochim Biophys Res Comun. 2005;334:1360–5.

    Google Scholar 

  32. O’Shaughnessy MJ, Chen ZM, Gramaglia I, Taylor PA, Panoskaltsis-Mortari A, Vogtenhuber C, et al. Elevation of intracellular cyclic AMP in alloreactive CD4(+) T cells induces alloantigen-specific tolerance that can prevent GVHD lethality in vivo. Biol Blood Marrow Transplant. 2007;13:530–42.

    Article  PubMed  Google Scholar 

  33. Chiaradonna F, Balestrieri C, Gaglio D, Vanoni M. Ras and PKA pathways in cancer: new insight from transcriptional analysis. Front Biosci. 2008;13:5257–78.

    Article  CAS  PubMed  Google Scholar 

  34. Nathanson NM. A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. PNAS. 2000;97:6245–7.

    Article  CAS  PubMed  Google Scholar 

  35. Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008;4:491–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lancaster JR, Xie K. Tumors face NO problems? Cancer Res. 2006;66:6459–62.

    Article  CAS  PubMed  Google Scholar 

  37. Reina S, Sterin-Borda L, Orman B, Borda E. Human mAChR antibodies from Sjögren syndrome sera increase cerebral nitric oxide synthase activity and nitric oxide synthase mRNA level. Clin Immunol. 2004;113:193–202.

    Article  CAS  PubMed  Google Scholar 

  38. Waid DK, Chell M, El-Fakahany EE. M(2) and M(4) muscarinic receptor subtypes couple to activation of endothelial nitric oxide synthase. Pharmacology. 2000;61:37–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mrs. María Ester Castro for her excellent technical assistance. This work was supported by grants from University of Buenos Aires (UBACYT MO064) and from the National Agency for Scientific and Technology Promotion (ANPCyT PICT 2006-485). Drs. Alejandro J. Español and María Elena Sales are established investigators in the National Research Council of Argentina (CONICET). Dr. Eulalia de la Torre is a fellow from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Sales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negroni, M.P., Fiszman, G.L., Azar, M.E. et al. Immunoglobulin G from Breast Cancer Patients in Stage I Stimulates Muscarinic Acetylcholine Receptors in MCF7 Cells and Induces Proliferation. Participation of Nitric Oxide Synthase-Derived Nitric Oxide. J Clin Immunol 30, 474–484 (2010). https://doi.org/10.1007/s10875-010-9370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9370-0

Keywords

Navigation