Skip to main content

Advertisement

Log in

Inertial oscillations as deep ocean response to hurricanes

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We discuss the deep ocean response to passing hurricanes (aka typhoons), which are considered as generators of near-inertial, internal waves. The analysis of data collected in the northwestern parts of the Pacific and Atlantic oceans in the hurricane season permit us to assess the deep ocean response to such a strong atmospheric forcing. A large number of moorings (more than 100) in the northwestern Pacific have allowed us to characterize the spatial features of the oceanic response to typhoons and the variable downward velocity of near-inertial wave propagation. The velocity of their downward propagation varies in the range 1–10 m/hour. It is higher in the regions of low stratification and high anticyclonic vorticity. The inertial oscillations generated by a hurricane last for 10–12 days. The mean anticyclonic vorticity in the region increases the effective frequency of inertial oscillations by 0.001–0.004 cyc/hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and I. A. Stegun (eds.) (1972): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Sect. 10.4). Dover, New York.

    Google Scholar 

  • Alford, M. H. (2001): Internal swell generation: the spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 2359–2368.

    Article  Google Scholar 

  • Balmforth, N. J., S. G. Llewellyn Smith and W. R. Young (1998): Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 1–40.

    Article  Google Scholar 

  • Blackman, R. B. and J. W. Tukey (1958): The Measurements of Power Spectra from the Point of View of Communications Engineering. Dover, New York.

    Google Scholar 

  • Brink, K. H. (1989): Observations of the response of thermocline currents to a hurricane. J. Phys. Oceanogr., 19, 1017–1022.

    Article  Google Scholar 

  • Brooks, D. A. (1983): The wake of hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117–129.

    Article  Google Scholar 

  • Church, J. A., T. M. Joyce and J. M. Price (1989): Current and density observations across the wake of hurricane Gay. J. Phys. Oceanogr., 19, 259–265.

    Article  Google Scholar 

  • D’Asaro, E. A. and H. Perkins (1984): A near-inertial wave spectrum for the Sargasso Sea in late summer. J. Phys. Oceanogr., 14, 489–505.

    Article  Google Scholar 

  • Fu, L.-L. (1981): Observations and models of internal waves in the deep ocean. Rev. Geophys. Space Phys., 19, 141–170.

    Article  Google Scholar 

  • Garrett, C. (2001): What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962–971.

    Article  Google Scholar 

  • Gill, A. E. (1984): On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 1129–1151.

    Article  Google Scholar 

  • Healey, D. and P. H. LeBlond (1969): Internal wave propagation normal to a geostrophic current. J. Mar. Res., 27, 85–98.

    Google Scholar 

  • Klein, P., S. Llewellyn Smith and G. Lapeyre (2004): Organization of near-inertial energy by an eddy field. Quart. J. Roy. Meteor. Soc., 130, issue 598, 1153–1166.

    Article  Google Scholar 

  • Kundu, P. K. (1984): Generation of coastal inertial oscillations by time-varying wind. J. Phys. Oceanogr., 14, 1901–1913.

    Article  Google Scholar 

  • Kunze, E. (1985): Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544–565.

    Article  Google Scholar 

  • Kunze, E. and E. Boss (1998): A model for vortex-trapped internal waves. J. Phys. Oceanogr., 28, 2104–2115.

    Article  Google Scholar 

  • Lozovatsky, I. D., E. G. Morozov and H. J. S. Fernando (2003): Spatial decay of energy density of tidal internal waves. J. Geophys. Res., 108(C6), 3201–3207.

    Article  Google Scholar 

  • Maeda, A., K. Uejima, T. Yamashiro, M. Sakurai, H. Ichikawa, M. Chaen, K. Taira and S. Mizuno (1996): Near-inertial motion excited by wind change in a margin of the thyphoon 9019. J. Oceanogr., 52, 375–388.

    Article  Google Scholar 

  • Mao, Q., S. W. Chang and R. L. Pfeffer (2000): Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon. Wea. Rev., 128, 4058–4070.

    Article  Google Scholar 

  • Maximenko, N. A., M. N. Koshlyakov, Yu. A. Ivanov, M. I. Yaremchuk and G. G. Panteleev (2001): Hydrophysical experiment “Megapolygon-87” in the northwestern Pacific Subarctic frontal zone. J. Geophys. Res., 106, 14143–14163.

    Article  Google Scholar 

  • Mooers, C. N. K. (1975): Several effects of a baroclinic current on the cross-stream propagation of inertial-inertial waves. Geophys. Fluid Dyn., 6, 245–275.

    Article  Google Scholar 

  • Morozov, E. G., K. Trulsen, M. G. Velarde and V. I. Vlasenko (2002): Internal tides in the Strait of Gibraltar. J. Phys. Oceanogr., 32, 3193–3206.

    Article  Google Scholar 

  • Morozov, E. G., G. Parrilla-Barrera, M. G. Velarde and A. D. Scherbinin (2003): The straits of Gibraltar and Kara Gates: a comparison of internal tides. Oceanol. Acta, 26, 231–241.

    Article  Google Scholar 

  • Munk, W. (1980): Internal wave spectra at the buoyant and inertial frequencies. J. Phys. Oceanogr., 10, 1718–1728.

    Article  Google Scholar 

  • Munk, W. and N. Phillips (1968): Coherence and band structure of inertial motion in the sea. Rev. Geophys., 6, 447–472.

    Article  Google Scholar 

  • Nilsson, J. (1995): Energy flux from traveling hurricanes to the internal wave field. J. Phys. Oceanogr., 25, 558–573.

    Article  Google Scholar 

  • Parks, T. W. and C. S. Burrus (1987): Digital Filter Design (Sect. 7.3.3). Wiley, New York.

    Google Scholar 

  • Pedlosky, J. (1987): Geophysical Fluid Dynamics (Sect. 2.7). Springer Verlag, New York.

    Book  Google Scholar 

  • Pinkel, R. (1984): Doppler sonar observations of internal waves: the wavenumber frequency spectrum. J. Phys. Oceanogr., 14, 1249–1270.

    Article  Google Scholar 

  • Pollard, R. T. (1970): On the generation by winds of inertial waves in the ocean. Deep-Sea Res., 17, 795–812.

    Google Scholar 

  • Pollard, R. T. (1980): Properties of near-surface inertial oscillations. J. Phys. Oceanogr., 10, 385–398.

    Article  Google Scholar 

  • Price, J. F. (1981): Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.

    Article  Google Scholar 

  • Price, J. F., T. B. Sanford and G. Z. Forristal (1994): Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.

    Article  Google Scholar 

  • Qi, H., R. A. de Szoeke, C. A. Paulson and C. C. Eriksen (1995): The structure of near-inertial waves during ocean storms. J. Phys. Oceanogr., 25, 2853–2871.

    Article  Google Scholar 

  • Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall and J. F. Price (1987): Ocean response to a hurricane, Part. 1, Observations. J. Phys. Oceanogr., 17, 2065–2083.

    Article  Google Scholar 

  • Shay, L. K. and R. L. Elsberry (1987): Near-inertial ocean current response to hurricane Frederic. J. Phys. Oceanogr., 17, 1249–1269.

    Article  Google Scholar 

  • Shay, L. K., S. W. Chang and R. L. Elsberry (1990): Free surface effects on the near-inertial ocean response to a hurricane. J. Phys. Oceanogr., 20, 1405–1424.

    Article  Google Scholar 

  • Shay, L. K., G. J. Goni and P. G. Black (2000): Effects of a warm oceanic feature on hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.

    Article  Google Scholar 

  • Taira, K., S. Kitagawa, H. Otobe and A. Tomio (1993): Observation of temperature and velocity from a surface buoy moored in the Shikoku Basin (OMLET-88)—an oceanic response to a typhoon. J. Oceanogr., 49, 397–406.

    Article  Google Scholar 

  • Treguier, A. M. and P. Klein (1994): Instability of wind-forced inertial oscillations. J. Fluid Mech., 275, 323–349.

    Article  Google Scholar 

  • van Meurs, P. (1998): Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 1363–1368.

    Article  Google Scholar 

  • Young, W. R. and M. Ben Jelloul (1997): Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735–766.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel G. Velarde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, E.G., Velarde, M.G. Inertial oscillations as deep ocean response to hurricanes. J Oceanogr 64, 495–509 (2008). https://doi.org/10.1007/s10872-008-0042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0042-0

Keywords

Navigation