Skip to main content
Log in

Synthesis, X-ray Crystallographic, Electrochemical, and Spectroscopic Studies of Bis-(1,10-phenanthroline)(2,2′-bipyridine)cobalt(III) Hexafluorophosphate

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis, X-ray crystallographic, electrochemical, and spectroscopic studies of bis-(1,10-phenanthroline)(2,2′-bipyridine)cobalt(III) hexafluorophosphate with acetone solvent of crystallization ([Co(phen)2(bpy)](PF6)3·1.6(CH3)2CO) is reported. The compound crystallized in a monoclinic space group P2(1)/n with a = 13.215(3) Å, b = 17.823(4) Å, c = 19.823(4) Å, β = 96.80(3)° and V = 4636.1(16) Å3 with Z = 4. The cobalt(III) metal center has a slightly distorted octahedral geometry. 1,10-Phenanthroline and 2,2′-bipyridine ligands were generally planar, and did not exhibit π–π overlap. The packing of the cations was stabilized by hydrogen bonding with hexafluorophosphate anions. The electrochemical studies revealed the CoIII/II, CoII/I and CoI/0 redox couples at E 1/2 = +0.32, −0.91 and −1.61 V (vs AgCl/Ag) respectively in acetonitrile. 59Co NMR spectroscopic studies revealed that the [Co(phen)2(bpy)](PF6)3·0.5(C2H5)2O species has a chemical shift of 6900 ppm in DMSO-d 6.

Graphical Abstract

The mononuclear complex, [Co(phen)2(bpy)](PF6)3·1.6(CH3)2CO) was synthesized and characterized, but more revealing 59Co NMR spectroscopic studies on the complex revealed interesting species in DMSO-d 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The ratio of ipa/ipc decreased as the scan rate was increases on the glassy carbon working electrode, see supporting information.

References

  1. Tsukahara K, Yamamoto Y (1981) Bull Chem Soc Jpn 54(9):2642–2645

    Article  CAS  Google Scholar 

  2. Utsuno S, Yoshikawa Y, Tatehata A, Yamatera H (1981) Bull Chem Soc Jpn 54(6):1814–1817

    Article  CAS  Google Scholar 

  3. Yamasaki K, Hara T, Yasuda M (1953) Proc Jpn Acad 29(7):337–341

    Google Scholar 

  4. Ye B-H, Chen X-M, Zeng T-X, Ji L-N (1994) Polyhedron 13(14):2185–2191. doi:10.1016/S0277-5387(00)81501-6

    Article  CAS  Google Scholar 

  5. Sharma RP, Singh A, Brandão P, Felix V, Venugopalan P (2009) J Mol Struct 921(1–3):227–232. doi:10.1016/j.molstruc.2008.12.069

    Article  CAS  Google Scholar 

  6. Singh WM, Baine T, Kudo S, Tian S, Ma XAN, Zhou H, DeYonker NJ, Pham TC, Bollinger JC, Baker DL, Yan B, Webster CE, Zhao X (2012) Angew Chem Int Ed 51(24):5941–5944. doi:10.1002/anie.201200082

    Article  CAS  Google Scholar 

  7. Sun Y, Bigi JP, Piro NA, Tang ML, Long JR, Chang CJ (2011) J Am Chem Soc 133(24):9212–9215. doi:10.1021/ja202743r

    Article  CAS  Google Scholar 

  8. Bigi JP, Hanna TE, Harman WH, Chang A, Chang CJ (2010) Chem Commun 46(6):958–960. doi:10.1039/B915846D

    Article  CAS  Google Scholar 

  9. Tsukahara K, Izumitani T, Yamamoto Y (1982) Bull Chem Soc Jpn 55(1):130–135

    Article  CAS  Google Scholar 

  10. Sasaki Y, Kato H, Kudo A (2013) J Am Chem Soc 135(14):5441–5449. doi:10.1021/ja400238r

    Article  CAS  Google Scholar 

  11. Carli S, Busatto E, Caramori S, Boaretto R, Argazzi R, Timpson CJ, Bignozzi CA (2013) J Phys Chem C 117(10):5142–5153. doi:10.1021/jp312066n

    Article  CAS  Google Scholar 

  12. Creutz C, Schwarz HA, Sutin N (1984) J Am Chem Soc 106(10):3036–3037. doi:10.1021/ja00322a051

    Article  CAS  Google Scholar 

  13. Funston AM, McFadyen WD, Tregloan PA (2002) J Chem Soc Dalton Trans 9:2053–2060. doi:10.1039/b107392n

    Article  Google Scholar 

  14. Kawade VA, Ghosh S, Sapre AV, Kumbhar AS (2010) J Chem Sci 122(2):225–232

    Article  CAS  Google Scholar 

  15. Kawade VA, Kumbhar AS, Naik DB, Butcher RJ (2010) Dalton Trans 39(24):5664–5675. doi:10.1039/b925220g

    Article  CAS  Google Scholar 

  16. Schwarz H, Creutz C, Sutin N (1985) Inorg Chem 24(3):433–439

    Article  CAS  Google Scholar 

  17. Kashiwabara K, Igi K, Douglas BE (1976) Bull Chem Soc Jpn 49(6):1573–1578

    Article  CAS  Google Scholar 

  18. Holder AA, Brown RFG, Marshall SC, Payne VCR, Cozier MD, Alleyne WA, Bovell CO (2000) Transition Met Chem 25(5):605–611. doi:10.1023/A:1007046125017

    Article  CAS  Google Scholar 

  19. Holder AA, Dasgupta TP (1996) J Chem Soc Dalton Trans 13:2637–2643. doi:10.1039/DT9960002637

    Article  Google Scholar 

  20. Holder AA, Dasgupta TP (2002) Inorg Chim Acta 331(1):279–289. doi:10.1016/S0020-1693(02)00686-2

    Article  CAS  Google Scholar 

  21. Holder AA, Dasgupta TP, Im S-C (1997) Transit Met Chem 22(2):135–140. doi:10.1023/A:1018463013139

    Article  CAS  Google Scholar 

  22. Lawrence MAW, Maragh PT, Dasgupta TP (2012) Inorg Chim Acta 388:88–97. doi:10.1016/j.ica.2012.02.038

    Article  CAS  Google Scholar 

  23. Lawrence MAW, Maragh PT, Dasgupta TP (2012) Transit Met Chem 37(6):505–517. doi:10.1007/s11243-012-9616-1

    Article  CAS  Google Scholar 

  24. Lawrence MAW, Thomas SE, Maragh PT, Dasgupta TP (2011) Transit Met Chem 36(5):553–563. doi:10.1007/s11243-011-9502-2

    Article  CAS  Google Scholar 

  25. Horton DC, VanDerveer D, Krzystek J, Telser J, Pittman T, Crans DC, Holder AA (2014) Inorg Chim Acta 420:112–119. doi:10.1016/j.ica.2013.12.001

    Article  CAS  Google Scholar 

  26. Wilkins PC, Johnson MD, Holder AA, Crans DC (2006) Inorg Chem 45(4):1471–1479. doi:10.1021/ic050749g

    Article  CAS  Google Scholar 

  27. Yuan H, Newton DAL, Seymour LA, Metz A, Cropek D, Holder AA, Ofoli RY (2014) Catal Commun 56:76–80. doi:10.1016/j.catcom.2014.06.007

    Article  CAS  Google Scholar 

  28. Lawrence MAW, Jackson YA, Mulder WH, Björemark PM, Håkansson M (2015) Aust J Chem 68(5):731. doi:10.1071/CH14380

    Article  CAS  Google Scholar 

  29. Cropek DM, Metz A, Muller AM, Gray HB, Horne T, Horton DC, Poluektov O, Tiede DM, Weber RT, Jarrett WL, Phillips JD, Holder AA (2012) Dalton Trans 41(42):13060–13073. doi:10.1039/c2dt30309d

    Article  CAS  Google Scholar 

  30. Vennampalli M, Liang G, Katta L, Webster CE, Zhao X (2014) Inorg Chem 53(19):10094–10100. doi:10.1021/ic500840e

    Article  CAS  Google Scholar 

  31. Rambaran VH, Erves TR, Grover K, Balof S, Moody LV, Ramsdale SE, Seymour LA, VanDerveer D, Cropek DM, Weber RT, Holder AA (2013) J Chem Crystallogr 43(10):509–516. doi:10.1007/s10870-013-0437-7

    Article  CAS  Google Scholar 

  32. Selvi PT, Palaniandavar M (2002) Inorg Chim Acta 337:420–428. doi:10.1016/S0020-1693(02)01112-X

    Article  CAS  Google Scholar 

  33. Agwara MO, Ndifon PT, Ndosiri NB, Paboudam AG, Yufanyi DM, Mohamadou A (2010) Bull Chem Soc Ethiop 24(3):383–389. doi:10.4314/bcse.v24i3.60680

    Article  CAS  Google Scholar 

  34. Taura T (1990) Bull Chem Soc Jpn 63(4):1105–1110. doi:10.1246/bcsj.63.1105

    Article  CAS  Google Scholar 

  35. Francis DJ, Jordon RB (1972) Inorg Chem 11(3):461–466

    Article  CAS  Google Scholar 

  36. Hadadzadeh H, Mansouri G, Khavasi HR, Hoffmann R-D, Rodewald UCH, Pöttgen R (2007) Anal Sci 23:x101–x102. doi:10.2116/analscix.23.x101

    CAS  Google Scholar 

  37. CrystalClear: an integrated program for the collection and processing of area detector data. Rigaku/MSC, The Woodlands, TX (2006)

  38. Sheldrick G (2008) Acta Cryst A 64(1):112–122. doi:10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  39. Spek AL (2003) PLATON—a multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  40. Sharma RP, Singh A, Brandão P, Felix V, Venugopalan P (2009) J Mol Struct 920(1–3):119–127. doi:10.1016/j.molstruc.2008.10.036

    Article  CAS  Google Scholar 

  41. Bakir M, Lawrence MAW, McBean S (2015) Spectrochim Acta A 146:323–330. doi:10.1016/j.saa.2015.03.079

    Article  CAS  Google Scholar 

  42. Gajardo F, Loeb B (2011) J Chil Chem Soc 56:697–701. doi:10.4067/S0717-97072011000200016

    Article  CAS  Google Scholar 

  43. Margel S, Smith W, Anson FC (1978) J Electrochem Soc 125(2):241–246. doi:10.1149/1.2131421

    Article  CAS  Google Scholar 

  44. Shah DM, Davies KM, Hussam A (1997) Langmuir 13(17):4729–4736. doi:10.1021/la970181r

    Article  CAS  Google Scholar 

  45. Zoski CG (2007) Handbook of electrochemistry. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

AAH would like to thank the National Science Foundation (NSF) for an NSF CAREER Award as this material is based upon work supported by the NSF under CHE-1431172 (formerly CHE – 1151832). AAH would also like to thank Old Dominion University for the start-up package that allowed for the successful completion of this work. The authors would also like to thank Drs. James Hall (Department of Chemistry and Biochemistry, Old Dominion University) and William L. Jarrett (School of Polymers and High-Performance Materials, The University of Southern Mississippi) for their assistance with acquisitions of the 59Co NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin A. Holder.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1205 kb)

Supplementary material 2 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, M.A.W., McMillen, C.D., Gurung, R.K. et al. Synthesis, X-ray Crystallographic, Electrochemical, and Spectroscopic Studies of Bis-(1,10-phenanthroline)(2,2′-bipyridine)cobalt(III) Hexafluorophosphate. J Chem Crystallogr 45, 427–433 (2015). https://doi.org/10.1007/s10870-015-0610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0610-2

Keywords

Navigation